LOFAR
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/10/03 15:28 UTC 版)
ナビゲーションに移動 検索に移動LOFAR | |
---|---|
![]() コア・ステーション1(CS-1)のLOFARプロトタイプアンテナ。 | |
運用組織 | ASTRON |
設置場所 | オランダ・ドイツ他欧州各国 |
座標 | 北緯52度54分32秒 東経6度52分08秒 / 北緯52.90889度 東経6.86889度座標: 北緯52度54分32秒 東経6度52分08秒 / 北緯52.90889度 東経6.86889度 |
観測波長 | 30 - 1.3メートル (電波) |
建設 |
2006年 ![]() ![]() |
観測開始年 | 2009年 |
形式 | ダイポールアンテナ・電波干渉計 |
口径 | 1000km以上 |
開口面積 | 1平方キロメートル |
架台 | 固定式 |
ウェブサイト | http://www.lofar.org |
LOFARは、LOw Frequency ARrayを意味する電波望遠鏡である。LOFARはオランダの天文学研究組織ASTRONによって建設がおこなわれており、ASTRON電波天文台によって運営される予定である。LOFARは多数の電波望遠鏡をひとつの巨大な電波望遠鏡として用いる電波干渉計であり、オランダの他に少なくとも5台の電波望遠鏡がドイツに、少なくとも1台の電波望遠鏡がイギリス、フランス、スウェーデンに設置される予定である。また、ポーランドやウクライナにも電波望遠鏡を設置し、総集光面積を1平方キロメートルにする構想も練られている、LOFARによって得られたデータの処理はフローニンゲン大学に設置されたスーパーコンピュータ ブルージーンPによって行われる。
技術的情報
LOFARは250MHzよりも低周波な電波を用いた観測天文学において、既存のものを大幅に上回る感度を有する電波望遠鏡として計画された。天体観測に使われる電波干渉計は、パラボラアンテナやダイポールアンテナなどを並べたものである。LOFARは既存の電波望遠鏡の多くの特徴を併せ持っている。特に、全方向ダイポールアンテナを1950年代に発展した開口合成の手法を用いてひとつの電波望遠鏡として機能させる。LOFARの設計は可動部がなく、安価に製作できるアンテナを用いている。観測する方向は電気的にアンテナ間で位相をずらすことによって行う。LOFARは一度に複数の方向を観測することができ、このため複数の観測者が一度にこの望遠鏡を使って観測することができる。
LOFARの各アンテナで得られた電気信号はデジタル化され、中央データ処理装置に送られたのちにソフトウェア上で合成され、電波写真が作成される。LOFARの建設コストの大半は電気回路のコストが占めるため、ムーアの法則にのっとれば次第に低価格になってきており、このために大規模な電波望遠鏡を建造することができるようになった。アンテナは単純な構造ではあるが、全部で1万台が必要になる。良質な電波写真を作製するために、LOFARのアンテナは直径1000キロメートルを超える範囲に展開される。LOFARの第一段階では、オランダ国内の36か所(ステーション)に6000台のアンテナが設置され、最大基線長は100キロメートルである。最初の試作機は2006年から試験運用が行われている。20のステーションが建設中であり、さらに16のステーションの建設が2010年に開始される。ドイツでは5つのステーション(ボン(エフェルスベルク)、Garching/Unterweilenbach、ポツダム、Tautenburg、Ju"lich)を建造するための予算が配分されている。エフェルスベルク電波望遠鏡の近くにあるステーションは2007年11月から運用が行われている。UnterweilenbachとTautenburgのステーションは建設中である。オランダとドイツのステーションを結んでの実験は2008年から行われている。イギリス、フランス、スウェーデンではそれぞれひとつのステーションを建造する予算が配分されている。データ転送には1ステーションあたり秒間数ギガビットが必要で、全体のデータ処理には数十テラフロップスの速度が必要である。
感度
LOFARの目的は、10 - 240MHzの周波数帯において、既存のケンブリッジカタログ、超大型干渉電波望遠鏡群や巨大メートル波電波望遠鏡を用いた観測に比べて高い空間分解能と感度で宇宙を観測することである。LOFARは、さらに次の世代の電波望遠鏡であるスクエア・キロメートル・アレイが完成するまで、この周波数帯では最も感度の高い電波望遠鏡になる。
科学研究
LOFARで得られる高い感度と空間分解能により、これまで不可能だった新たな天文学観測や地球観測が可能になる。
以下の表では、LOFARで観測ができる天体の赤方偏移を
2005年4月26日、LOFARのデータ処理のためにIBMのスーパーコンピューターBlue Gene/Lがフローニンゲン大学数学センターに導入された。当時、このスーパーコンピューターはバルセロナのMareNostrumに次いでヨーロッパ第2位の計算速度を持っていた[3]。
2006年の8月から9月にかけて、LOFARの最初のステーション(Core Station 1, 略称 CS1 北緯52度54分32秒 東経6度52分8秒 / 北緯52.90889度 東経6.86889度)が試験機材によって構築された。ダイポールアンテナ96台が、アンテナ48台の中央クラスターと16台のクラスターの計4つに分けられている。それぞれのクラスターの大きさは100メートルであり、4つのクラスターは直径約500m内に配置されている。
2007年11月、オランダ国外の最初のLOFAR国際ステーション (Germany 1あるいはDE601)が、ドイツのエフェルスベルク100m電波望遠鏡の隣に設置され運用が始まった。また、LOFAR中心部の外縁に位置する初の本格ステーションCS302が2009年5月に完成し、2009年の終わりまでにオランダ国内に23のステーションが完成する予定である。[4].
関連項目
外部リンク
- LOFAR website
- German LOFAR website
- LOFAR:UK website
- Transients Key Science Project
- Solar Physics & Space Weather Key Science Project
- Cosmic Magnetism Key Science Project
- Interactive map of possible station locations
参考
- ^ LOFAR Science Case: Ultra High Energy Cosmic Rays
- ^ Galactic magnetic fields
- ^ TOP500 List - June 2005
- ^ Wise, M: LOFAR Technical Status: Introduction and Timelines, May 2009
- LOFAR as a Probe of the Sources of Cosmological Reionisation. (preprint: astro-ph/0412080)
- LOFAR, a new low frequency radio telescope. (preprint: astro-ph/0309537)
- LOFAR: A new radio telescope for low frequency radio observations: Science and project status. (preprint: astro-ph/0307240)
- LOFAR in Germany. (reprint from Advances in Radio Science: [1])
- Das Square Kilometre Array (in German). (reprint from Sterne und Weltraum 9/2006: [2])
座標: 北緯52度54分31.55秒 東経6度52分08.18秒 / 北緯52.9087639度 東経6.8689389度
LOFAR
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/22 02:28 UTC 版)
当時、ベルリン封鎖などを通じて冷戦構造が顕在化しつつあり、ソ連に対する備えの必要性が叫ばれていたが、ソ連海軍はズールー型やウィスキー型など、UボートXXI型に範をとった水中高速潜の配備を進めていたことから、対潜戦能力の整備には高い優先度が与えられた。この一環として、1950年よりハートウェル計画が発動された。この研究は、500ヘルツ以下という超低周波を対象として、最低限20波長以上のソナー・アレイを作り(500ヘルツなら60メートル、100ヘルツなら300メートル)、深海サウンドチャネルを利用して長距離探知を行うもので、リアルタイムでスペクトル分析を行うことも提言された。一方、潜水艦開発グループからは、8分の1オクターブのフィルターを使用した潜水艦探知や、100ヘルツをピークとして25ヘルツから200ヘルツという低周波の潜水艦音響信号の発見が公表された。またベル研究所が参加したジェジベル計画(Project Jezebel)では、低周波音の分析および記録(low frequency analysis and recording, LOFAR)のためのパラメーターが明らかにされ、分析幅1~0.5ヘルツのリアルタイム・スペクトル分析器が提案された。 1951年には、バハマ・エルーセラ島にハイドロフォンをつけたブイ6つ(3つは水深12メートル、2つは293メートル、1つは305メートル)と、ハイドロフォン40個から構成される長さ305メートルのリニアアレイ1つ(水深439メートル)が設置され、1952年4月には、将官達の前でデモンストレーションを成功させた。これを受けて、全米研究評議会水中戦委員会はLOFARを潜水艦探知のブレークスルーと宣言し、海軍はシーザー計画を開始した。この計画では、長距離探知・類別システムの製造・設置についてベル研究所と契約を締結し、この契約をもって、システム名はSOSUSと称されるようになった。
※この「LOFAR」の解説は、「SOSUS」の解説の一部です。
「LOFAR」を含む「SOSUS」の記事については、「SOSUS」の概要を参照ください。
- lofarのページへのリンク