18世紀から19世紀初頭にかけての物理学実験
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/09 06:26 UTC 版)
「物理学の歴史」の記事における「18世紀から19世紀初頭にかけての物理学実験」の解説
同じ頃、ガリレオらによって始まった実験の伝統も存続していた。イギリスの王立協会とフランス科学アカデミーがその中心であり、1704年の著書『光学』Opticksで白色光をプリズムによってスペクトルに分ける実験を紹介したニュートンは、実験分野においても影響力の強い人物だった。力学、光学、磁性学、静電気学、化学、生理学等の実験は、18世紀には互いに明確には分かれていなかったが、理論科学と実験科学の間には方向性に大きな差異が生じてきた。例えば化学の実験では、化学結合における抽象的なニュートン力の理論の構築に向かうのではなく、化学物質の単離や化学反応の分類に焦点が当てられるようになった。 ただし電流、カロリック説、フロギストン説等の重さのない流体を扱う理論では、理論と実験の結びつきは残っていた。これらの概念を現実の流体と見なすと、その流れは力学装置や化学反応を通して追うことができる。この分野での実験は、ライデン瓶やボルタ電池等の新しい種類の実験機器や熱量計等の新しい計測機器の開発や温度計等の旧来の機器の改良に繋がった。また、グラスゴー大学のジョゼフ・ブラックによる潜熱やフィラデルフィアの科学者ベンジャミン・フランクリンによる正負の電荷等、新しい概念が登場した。 18世紀初頭には、運動におけるニュートンの原理のような静電気学や磁性学における絶対的な理論を探すことが重要な課題であったが、成し遂げた者はいなかった。19世紀初めに実験の伝統が広く根付き、新しく設立された王立協会のような機関でそれが洗練されてくると、この不可能はゆっくりと解消していった。王立協会では、ジョン・ドルトンが化学の原子論的解釈を提案し、トーマス・ヤングが光の波としての解釈を提案し、マイケル・ファラデーがファラデーの電磁誘導の法則を確立した。その一方で、論理的力学の分析法は実験的現象にも適用され始めた。その顕著な例がフランスの数学者ジョゼフ・フーリエが1822年に発表した熱の流れについての分析法である。
※この「18世紀から19世紀初頭にかけての物理学実験」の解説は、「物理学の歴史」の解説の一部です。
「18世紀から19世紀初頭にかけての物理学実験」を含む「物理学の歴史」の記事については、「物理学の歴史」の概要を参照ください。
- 18世紀から19世紀初頭にかけての物理学実験のページへのリンク