電気力学と相対性
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/05 00:35 UTC 版)
「ヘンドリック・ローレンツ」の記事における「電気力学と相対性」の解説
1895年、マイケルソン・モーリーの実験結果を説明しようとしてローレンツは、移動する物体が移動する方向に沿って収縮するという仮説を提案した(ジョージ・フィッツジェラルドも同じ解釈に到達していた。そのためこの長さの収縮をフィッツジェラルド-ローレンツ収縮とも呼ぶ)。ローレンツは、相対的に移動する基準座標系間の電磁現象(光の伝播)を説明しようとした。彼はある基準座標系から別の基準座標系への変換を新たな時間変数「局所時間」を導入することで単純化できることを発見した。局所時間は対応する基準座標系の位置と絶対時間に依存する。ローレンツは、物理的関連性の詳細な解釈を与えずに局所時間を使い、これを発表した(1895年と1899年)。1900年、アンリ・ポアンカレはローレンツの局所時間を「素晴らしい発明」だとし、複数の移動する座標系にある時計が互いに時間合わせするのに光の信号を交換するという例を挙げ、どの座標系から見ても光の速度は同じだと仮定した。 1899年および1904年の論文 "Electromagnetic phenomena in a system moving with any velocity smaller than that of light"(光速未満の速度で運動する系における電磁現象)でローレンツはその変換に「時間の遅れ」を導入し、1905年にポアンカレがこれをローレンツ変換と名付けた。1897年にジョゼフ・ラーモアが電子の軌道を説明するのに同じ変換を用いていたが、ローレンツは知らなかったと見られる。ラーモアとローレンツが示した方程式は一見すると違うようだが、1905年にポアンカレとアインシュタインが提示した方程式と代数的に等価だった。ローレンツの1904年の論文は電気力学の共変的定式化を含み、うまく定義された変換特性によって異なる基準座標系における電気力学現象を1つの方程式群で記述している。この論文は電気力学の実験結果が基準座標系の動きに依存しないということを示している。また、1904年の論文では、光速に近い速度で移動する物体の慣性質量が増加するという点についても詳細に論じている。1905年、アインシュタインはそれらの概念や数学的手法やローレンツの考察を利用し、"Elektrodynamik"(電気力学)と題した論文を書き、これが後に特殊相対性理論と呼ばれるようになった。アインシュタインの成果はローレンツの成果に基づいているため、もともとは「ローレンツ-アインシュタイン理論」と呼ばれていた。 質量の増大は特殊相対性理論が予測した事象の中で最初に検証されたが、カウフマン(en)による初期の実験では予測が間違っているとされた。これに対してローレンツは有名な見解 ("at the end of my Latin") を述べている。彼の予測の正しさが証明されるのは1908年のことである。1909年、ローレンツはコロンビア大学で行った数理物理学に関する一連の講義をまとめた "Theory of Electrons" を出版した。
※この「電気力学と相対性」の解説は、「ヘンドリック・ローレンツ」の解説の一部です。
「電気力学と相対性」を含む「ヘンドリック・ローレンツ」の記事については、「ヘンドリック・ローレンツ」の概要を参照ください。
- 電気力学と相対性のページへのリンク