1900年頃の新しい物理学の始まり
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/09 06:26 UTC 版)
「物理学の歴史」の記事における「1900年頃の新しい物理学の始まり」の解説
マクスウェルの理論の成果は、その頃見つかり始めていたいくつかの欠陥によって崩れつつあった。マイケルソン・モーリーの実験では、エーテルに対する地球の運動の角度の変化から期待される光速のぶれが検出できなかった。ヘンドリック・ローレンツは、エーテルは圧縮された物質であり、そのため検出できないのだと説明した。一方、波の予期しない形が発見され始めた。ウィルヘルム・レントゲンは1895年にX線を発見し、1896年にはアンリ・ベクレルがある種の物質は自発的に放射線を放出することを発見した。マリ・キュリーとピエール・キュリーは、このような性質を持つ物質を放射性物質と呼び、ラジウムとポロニウムという放射性元素を単離した。アーネスト・ラザフォードとフレデリック・ソディは、ベクレルの放射線を電子とヘリウム原子核であると同定した。1911年、ラザフォードは、原子の質量のほとんどは正の電荷を持った原子核に集中しているが、これは理論的には安定でないことを確かめた。放射線と放射性崩壊の研究は、1930年代を通じて物理学や化学の分野で競って研究された。この頃に発見された核分裂は「原子力」と呼ばれるようになる新しいエネルギーの実用化への道を開いた。 同じ頃、革新的に新しい物理学の理論が生まれ始めていた。1905年、当時ベルンの特許局職員であったアルベルト・アインシュタインは、光速はあらゆる慣性系で一定であり、電磁気学の法則は慣性系とは独立に通用するとし、時間や長さの観測は、測定される物体に対する観測者の運動に依存して変化すると主張した(これは特殊相対性理論と呼ばれる)。また、質量とエネルギーは、E=mc2という方程式に従って相互変換可能な量であることも示した。同じ年の論文で、アインシュタインは電磁放射は、黒体放射を正確に記述するために1900年にマックス・プランクが仮定した定数に従って、離散量(量子)で伝達されることを主張した。デンマークの物理学者ニールス・ボーアは、1913年にこの同じ定数をラザフォードの原子模型の安定性と水素原子から放出される光の周波数を説明するために用いた。
※この「1900年頃の新しい物理学の始まり」の解説は、「物理学の歴史」の解説の一部です。
「1900年頃の新しい物理学の始まり」を含む「物理学の歴史」の記事については、「物理学の歴史」の概要を参照ください。
- 1900年頃の新しい物理学の始まりのページへのリンク