電波吸収体技術
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/12/16 01:33 UTC 版)
電波吸収体技術は形状制御技術ではコントロールしきれなかった鋭角などに、電波吸収体または電波吸収材料(Radar absorbent material、RAM)と呼ばれる物質を使って電波を吸収し反射波を減らす技術である。電波吸収材料は大きく3つに分かれる。 導電性電波吸収材料は材料内部の抵抗によって電波によって発生する電流を吸収するものである。導電性繊維の織物によって優れた電波吸収体が実用化されている。 誘電性電波吸収材料は分子の分極反応に起因する誘電損失を利用するが、誘電体単体では大きな損失は望めないので、カーボン粉などをゴム、発泡ウレタン、発泡ポリスチロールなどの誘電体に混合して見かけ上の誘電損失を大きくしたものが開発されている。 磁性電波吸収材料は磁性材料の磁気損失によって電波を吸収するものである。鉄、ニッケル、フェライトを使用して電波を吸収できるが、重くなるのが欠点である。 また、使用する形態によっても電波吸収体は分けられる。 構造材型は構造材自身に電波吸収体の機能を持たせた、2つの機能を兼ね備えた部材を使用する技術であり、構造が単純で軽量化できるので実用化されつつある。 貼付型は外面に電波吸収体を貼り付ける形態であり、ゴムシート状のフェライトやカーボンが使用される。電波暗室では発泡スチロールが使われる。重量が増す。 塗装型は外面に電波吸収体を塗装する形態であり、厚さを一定にするのが困難なため対象周波数に対する精度が保てない点や、厚く塗る必要があることからはがれ易い点に問題がある。 電波吸収体は、電波特性、角度特性、偏波特性、付加特性(重量、耐熱性、耐候性、施工性、価格など)の特性が考慮される。カーボンマイクロコイル(CMC)を使用することで幅広い帯域に対する電波吸収が実現出来る。コイル径が1-10μm、長さは0.2-10mm程度で、ポリウレタンのような支持基材中に添加量が1wt%-1.5wt%が-15dB以上の最も効率的な吸収を示す。 また、EMファイバーと呼ばれる、ガラス繊維や合繊繊維中に吸収する波長の2倍の長さのステンレス繊維を分散させた電波吸収材がある。電波吸収体は、インピーダンスの異なるいくつかの層を重ねることで、入射電波を逃がさないようにできる。入射側は低インピーダンスとして、内部深くに電波が進むにつれてインピーダンスを高くし、電波の反射を抑えながら効果的に吸収・消滅させることが図れる。 誘電性の吸収材料を使用して λ 4 {\displaystyle {\frac {\lambda }{4}}} の厚みを持たせると、誘電率 ϵ γ {\displaystyle {\boldsymbol {\epsilon }}_{\gamma }} に対して λ 4 ϵ γ {\displaystyle {\frac {\lambda }{\sqrt {4{\boldsymbol {\epsilon }}_{\gamma }}}}} に減らすことが出来る。
※この「電波吸収体技術」の解説は、「ステルス性」の解説の一部です。
「電波吸収体技術」を含む「ステルス性」の記事については、「ステルス性」の概要を参照ください。
- 電波吸収体技術のページへのリンク