選択公理に関して
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/08/14 15:53 UTC 版)
既に注意した通り、一般の不連続線型写像の存在定理には選択公理 (AC) が用いられる。実は完備な定義域(例えばバナッハ空間)を持つ不連続線型写像の構成的な例というものは存在しないのである。解析学において、職業数学者がふつう実用にする限りは、選択公理は(ZFC集合論の公理の一つとして)常に仮定されている。従って、解析学者は任意の無限次元位相線型空間に不連続線型写像を認めることができる。 一方、1970年にロバート・ソロヴェイ(英語版)は、実数からなる任意の集合が可測となるような集合論のモデルを示した。従って、このモデルにおいて不連続線型実函数は存在しないことになる。このモデルは明らかに選択公理を満足しない。 ソロヴェイの結果は、任意の無限次元線型空間が不連続線型写像を許すこと仮定することは必要条件でないことを示すものであり、より構成主義者の観点に沿った解析学というものが展開し得る。例えば、アンリ・ジョルジュ・ガルニールは、所謂「夢の空間」("dream spaces", その上で定義されるノルム空間に値を取る任意の線型写像が連続となる位相線型空間)の探索において、ZF+DC+BP(従属選択公理は弱い形の選択公理であり、ベールの性質は強い選択公理の否定である)がガルニール-ライトの閉グラフ定理を証明する公理系として採用している。この閉グラフ定理は、(他にもいろいろあるが)F-空間から位相線型空間への任意の線型写像が連続となることを述べるものである。もっと強烈な構成主義では、(適当な枠組みにおいて解釈すると)任意の写像が連続となることを主張するCeĭtinの定理がある。こういった立場を取る職業数学者は極めて少数派である。 選択公理を持たない集合論では不連続線型写像が存在しなくても矛盾は起こらないのだから、結論としては選択公理の必要性を取り除くことは可能でないということになる。系として、至る所導函数が定義できないような不連続作用素が構成可能である。
※この「選択公理に関して」の解説は、「不連続線型写像」の解説の一部です。
「選択公理に関して」を含む「不連続線型写像」の記事については、「不連続線型写像」の概要を参照ください。
- 選択公理に関してのページへのリンク