弦の場の理論とは? わかりやすく解説

弦の場の理論

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/04 09:07 UTC 版)

弦の場の理論(げんのばのりろん、英語: String Field Theory)とは、相対論的な弦の力学場の量子論の言葉で再定式化されるような弦理論の定式化である。弦の散乱振幅を弦の結合と分岐の頂点、及びプロパゲーター(propagator)を見つけることにより、この定式化は摂動論のレベルで完成している。これによりファインマン・ダイアグラムの様な振幅が与えられる。大半の弦理論ではこの振幅は、自由弦と加えられた相互作用項を第二量子化することにより得られる古典的作用によりエンコードされている。通常の(場の理論の)第二量子化の場合と同様に、その定式化の古典場の構成は、元々の理論の波動関数により与えられる。このことは、弦の場の理論の場合も 弦の場 と呼ばれる古典的構成が、自由弦の作るフォック空間の元で与えられることを意味する。

定式化の主要な有利点は、オフシェル(off-shell)の確率振幅の計算が可能なことであり、古典的作用が有効なときには、弦の散乱の標準的な種数による方法からは、直接見ることのできない非摂動的な情報をもたらすことである。特に、アショク・セン英語版(Ashoke Sen)の研究 [1]に従うと、不安定なDブレーン(D-brane)上のタキオン凝縮英語版(tachyon condensation)の研究に役立つ。弦の場の理論は、

にも応用出来る。


弦の場の理論は、第二量子化される弦のタイプによって多くの多様性を持っている。開弦の場の理論 は開弦の振幅を記述し、閉弦の場の理論 は閉弦の場の理論を記述し、開閉弦の場の理論 開弦と閉弦の双方の場の理論を意味する。

加えて、元々の自由弦の理論でワールドシートの微分同相写像共形変換をどのように固定するかに依存して、結果として現れる弦の場の理論は、非常に異なったものとなりうる。光円錐ゲージ理論英語版(light cone gauge)を使うと、光円錐ゲージの弦の場の理論 を得る。一方、BRST量子化英語版(BRST quantization)を使うと 共変な弦の場の理論 を得る。これらをハイブリッドにした弦の場の理論もあり、共変光円錐ゲージの弦の場の理論 と呼ばれ、光錐ゲージ固定とBRSTゲージ固定を行う弦の場の理論を使う。[5]

弦の場の理論の最終的な形は、背景独立な開弦の場の理論 と呼ばれ、全く別の形態を取る。ワールドシートの弦理論を第二量子化することに替わり、2-次元の場の量子論の空間を第二量子化する。[6]

光錐の弦の場の理論

光錐の弦の場の理論はスタンレイ・マンデルスタム英語版(Stanley Mandelstam)により導入され、[7]マンデルスタムやマイケル・グリーン(Michael Green)やジョン・シュワルツ(John Schwarz)やラース・ブリンク(Lars Brink)により開発された。[8] 光錐の弦の第二量子化の明らかな記述は、ミチオ・カク(Michio Kaku)と吉川・圭二英語版(Keiji Kikkawa)により与えられた。[9][10]

光錐の弦の場の理論は構成された最初の弦の場の理論であり、光錐ゲージの弦の散乱の単純さを基礎としている。例えば、ボゾン閉弦英語版(bosonic closed string)の場合には、ワールドシートの散乱図形は自然にファインマン図形のような形をなり、下図のように一つのプロパゲーターの2つの成分から作られる。

さらに、結合と分岐のための2つの頂点は、3つのプロパゲーターを貼り合わせを使うことができて、下図のようになる。

これらの頂点とプロパゲーターは、

赤い線に沿って

3次元に埋め込まれた頂点を表現するために、プロパゲーターは中線に沿って半分に折り曲げてある。その結果により得られる幾何学は、3つのプロパゲーターの中線が出会い、曲率が特異となるただ一つの点を除き、完全に平坦である。

これらのファインマン・ダイアグラムは、開弦の散乱ダイアグラムのモジュライ空間の完全な被覆空間を生みだす。このことから、オンシェルの振幅に対し、ウィッテンの開弦の場の理論を使い計算された n-個の点を持つ開弦の振幅は、通常のワールドシートの方法を使い計算された振幅と同一である。[24] ウィッテンの弦の場の理論を使った最初のオフシェル計算は、スチュアート・サミュエル英語版(Stuart Samuel)により行われた。

超対称性と共変な開弦の場の理論

ウィッテンの3次の開弦の場の理論の超対称的拡張を構成する主要な方法は、2つある。一つは、ボゾンの仲間の形によく似せて構成する方法で、変形された3次超弦理論の場の理論(modified cubic superstring field theory)である。2つめは、ナタン・バーコヴィッツポルトガル語版(Nathan Berkovits)による全く異なった、WZWモデル(WZW model)タイプの作用をベースとした方法である。

変形された3次超弦理論の場の理論

ウィッテンの3次の開弦の場の理論のRNS弦への拡張である整合性を持つ第一の拡張は、クリスティアン・プレイトショフ、チャールズ・ソーン英語版(Charles Thorn)、スコット・ヨスト、さらに独立に、イリーナ・アレフェエバ(Irina Aref'eva)、メドヴェーデフ(P. B. Medvedev)、ズバレフ(A. P. Zubarev)により得られた。[25] NS弦は小さなヒルベルト空間(つまり


弦の場の理論

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/11 15:23 UTC 版)

弦理論」の記事における「弦の場の理論」の解説

現在の定式化では、南部後藤作用もしくはポリヤコフ作用から出発し、弦の単一過程確率振幅求める事が出来る。場の量子論とのアナロジー言えば、これはファインマンダイアグラム一つ分に相当する全ての過程ダイアグラム足し合わせる事によって振幅求める事は可能とされるが、これは理論摂動論定義されに過ぎない場の量子論では場というもので作用書き下し、それを摂動展開する事によってファインマンルールを得るが、弦理論でのこれに相当する定式化、弦の場の理論はミチオ・カク吉川圭二による提唱以来様々な研究重ねられてきたが、未完成である。 例えDブレーンは、非摂動論的な対象一つである。Dブレーンは開弦から出来ており、ボソン弦理論全てのDブレーンは開弦由来タキオンを含む。タキオン存在場の理論においては、その状態が不安定である事を意味し結論としてボソン弦理論全てのDブレーン崩壊する崩壊後の状態は、Dブレーンがないため開弦が存在できず、もはや弦での記述不可能となる。弦の場の理論はこのような状態の記述出来ると期待され実際に数値計算でならばポテンシャル求められている。極めて小さエネルギー安定状態存在するとされるタキオン凝縮, en)。 閉弦タキオンに関してこのような物理的解釈すら出来ないこれをもってボソン弦理論は不完全であり、弦の完全な定式化のためには超対称性必要不可欠であるとする立場がある一方、弦の場の理論の研究はなおも続けられている。

※この「弦の場の理論」の解説は、「弦理論」の解説の一部です。
「弦の場の理論」を含む「弦理論」の記事については、「弦理論」の概要を参照ください。

ウィキペディア小見出し辞書の「弦の場の理論」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「弦の場の理論」の関連用語

弦の場の理論のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



弦の場の理論のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの弦の場の理論 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの弦理論 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS