古在メカニズムによる整列
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/06/22 14:00 UTC 版)
「プラネット・ナイン」の記事における「古在メカニズムによる整列」の解説
トルヒージョとシェパードは2014年に、平均距離が 200〜300 au の円軌道にある未知の重い惑星が、大きな軌道長半径を持つ12個の太陽系外縁天体の近日点引数の偏りの原因であると主張した。彼らは、近日点距離が 30 au 以上、軌道長半径が 150 au 以上の12個の太陽系外縁天体の軌道の近日点引数が 0° 付近に偏っていることを発見した。数値シミュレーションの結果、何十億年もの時間が経過するとこれらの天体の歳差運動の速度が異なることによって近日点はランダムに分布してしまうことを示し、軌道を偏らせるためには数百auの距離の円軌道にある重い惑星が必要であることを示唆した。この重い天体は太陽系外縁天体の近日点引数を古在メカニズムを介して 0° か 180° の周囲を秤動させるため、これらの天体は惑星に最も近い点と最も遠い点である近日点と遠日点付近で惑星の軌道平面を横切ると予想される。2〜15地球質量の天体を 200〜300 au の範囲の軌道傾斜角が小さい円軌道に置いた場合の数値シミュレーションでは、セドナと 2012 VP113 の近日点引数は数十億年にわたって 0° 付近を秤動し(近日点距離が小さい天体は秤動を起こさなかった)、1,500 au にある大きく傾いた軌道にある海王星質量の天体と秤動を起こす時期を経験した。この仮説では、180° 程度の近日点引数を持つ天体が存在していないことを説明するためには、太陽系近傍の恒星の通過で取り除かれたなどの、さらなる過程が必要とされる。 これらのシミュレーションでは、一つの大きな惑星が小さい太陽系外縁天体をどのように似た種類の軌道に導きうるかという基本的なアイデアが示された。これは仮説上の天体の特定の軌道を算出するものではなく概念的なシミュレーションによる基本的な証明であり、仮説上の天体が取りうる軌道の配置は多数あると述べている。そのため彼らは全ての eTNOs の軌道の偏りをうまく組み込んだモデルを完全には定式化していない。しかし彼らは太陽系外縁天体の軌道に偏りがあること、およびこのもっともらしい説明は未知の遠方の重い惑星の存在であることに気が付いた初めての研究者であった。彼らの研究は、天王星の運動に奇妙な点があることに気が付き、それが未知の第8惑星からの重力による可能性が高いと示唆して海王星の発見に繋がったアレクシス・ブヴァールの研究と非常に類似している。 Raúl および Carlos de la Fuente Marcos は、似たようなモデルだが共鳴している2つの遠方惑星を仮定したモデルを提案している。de la Fuente Marcos らが Sverre Aarseth と共に行った解析では、観測されている近日点引数の偏りは観測バイアスによるものではないことが確認されている。彼らは、軌道の偏りは太陽から 200 au 程度離れた軌道を持つ火星から土星の間の質量を持つ天体によって引き起こされたと推測した。トルヒージョとシェパードらの仮説と同様に、彼らも太陽系外縁天体は古在メカニズムによって偏った軌道の状態を維持されていると理論的に予測し、これらの運動を木星の影響下にあるマックホルツ第1彗星 (96P/Machholz) の振る舞いと比較した。しかし彼らもまた未知の惑星1つでは太陽系外縁天体の軌道の整列を説明するのに苦労した。そのため彼らはこの未知の惑星自身は太陽から 250 au にあるさらに重い別の天体と共鳴状態にあると考えた.。ブラウンとバティギンは論文中で、古在メカニズムを介した 0° と 180° 付近への近日点引数の整列を起こすためには、各外縁天体に対する未知の惑星の軌道長半径の比率は1に近い必要があることを指摘した。つまりこの仮説では観測データに合わせた軌道を持つ複数の未知の惑星が必要になることを示唆しており、この説明はあまりにも扱いにくいものであるとしている。
※この「古在メカニズムによる整列」の解説は、「プラネット・ナイン」の解説の一部です。
「古在メカニズムによる整列」を含む「プラネット・ナイン」の記事については、「プラネット・ナイン」の概要を参照ください。
- 古在メカニズムによる整列のページへのリンク