オープンコレクタ・デバイスの応用
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/04/26 22:51 UTC 版)
「オープンコレクタ」の記事における「オープンコレクタ・デバイスの応用」の解説
プルアップ抵抗が接続される電圧 (+V) は電源電圧 (Vcc) と同じである必要はない。このため、オープンコレクタは定格電圧の異なる論理回路同士の接続にも使える。 また、複数のオープンコレクタ出力を1つの線に接続することもできる。全出力がハイインピーダンスになると、プルアップ抵抗によって電圧の高い状態になる。出力の1つ以上が接地状態になると、その線にかかる電圧は低くなる。 複数のオープンコレクタを1つにまとめると、その線は「ワイヤードAND」または「ワイヤードOR」ゲートとして機能する。すなわち、正論理ではワイヤードAND(論理積)となり、負論理ではワイヤードOR(論理和)となる。これにより、入力端子数の極端に多いAND回路を安価に構成できる。 オープンコレクタの問題点の一つは電力消費量であり、トーテムポール出力およびCMOS出力の回路に比べて一般に電流が多く流れる傾向がある。オフ状態であっても微小なリーク電流が流れる(その量は温度によって変化する)。また、"L"→"H"への状態遷移時には伝送線路の浮遊容量と入力回路の寄生容量、およびワイヤードOR接続されている場合は他のICの出力回路の寄生容量をプルアップ抵抗で充電しつつ電圧が立ち上がるため、遷移完了までの正確な時間は設計段階では確定できない。それに加え、電圧の立ち上がり途中は伝送線路のインピーダンスはプルアップ抵抗そのものとなり、外来ノイズの影響を受けやすい("H"→"L"への立ち下がり時には、ON状態のトランジスタにより上記容量はほぼ瞬時に放電が行われ、外来ノイズも非常に低いインピーダンスでアースされるため、遷移時間のぶれは相対的に小さく済む)。 これらの理由から、オープンコレクタ出力回路は 通常はプルアップ抵抗に電流が流れない"H"状態で、電圧0になる頻度は低い 状態遷移時間のぶれが問題にならない程度の低速伝送経路、もしくは"H"→"L"への遷移時間は重要だが、"L"→"H"への立ち上がり時間は正確でなくても構わない というロジック回路に使われる。 もう一つのよくある用途は、プルアップは行わずに電球や発光ダイオードのカソードにつないで(一方、反対側の端子は+5Vなどの電源電圧につなぐ)、例えば7セグメントディスプレイとして人間が直接目で見る形で出力する使い方である。この場合はLレベルにおいて発光する。また、プルアップしたうえでLEDのアノードにつないでカソードを接地した場合はHレベルで発光するようになり、この構成ではプルアップ電圧を変更することによってVccとは異なる電圧で動作するLEDを容易に利用できる。 この他、旧式のTTL/DTLベースのSRAMではオープンコレクタのワイヤードANDの構成が使われている。今日のCMOSベースのSRAMでも通常のCMOS構造とオープンドレイン構造を過電流になるのを避けた上で無理やりワイヤードANDで使う構造になっている。
※この「オープンコレクタ・デバイスの応用」の解説は、「オープンコレクタ」の解説の一部です。
「オープンコレクタ・デバイスの応用」を含む「オープンコレクタ」の記事については、「オープンコレクタ」の概要を参照ください。
- オープンコレクタ・デバイスの応用のページへのリンク