イロレーティングとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 日本語表現辞典 > イロレーティングの意味・解説 

ELOレーティング


イロレーティング

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/07/06 07:25 UTC 版)

イロレーティング英語: Elo rating)とは、対戦型の競技(2人のプレイヤーまたは2つのチームが対戦して勝敗を決めるタイプの競技)において、相対評価で実力を表すために使われる指標の一つ。数学的裏付けのある最も著名なレーティングシステムである。

イロレーティングは、もともとチェスの実力を表すために考案されたものだが、様々な競技に応用されている。具体的には

などでイロレーティング、あるいはイロレーティングを改変したレーティングシステムが採用されている。一部の競技では単にレーティングと呼ぶこともある。

なお、「イロ」とは、考案者であるアルパド・イロハンガリー生まれのアメリカ人物理学者)に由来する。

概要

例えば100m走のような絶対値を競う競技では、その絶対値(例えば100m走のタイム)が試合の結果となるので、これをそのまま実力の基準として使うことができる(自己ベストタイムなど)。しかし、チェスやサッカーのような対戦型の競技では、試合の結果は勝敗であるから、そのままでは実力を表すことができない。そこで、勝敗を実力の指標に変換する工夫が必要となる。

古典的指標としては、勝率(勝敗比に変換することもできる)がある。しかし、勝率には「対戦相手の強さを考慮していない」という欠点があった。すなわち、トッププレイヤーばかりを相手にして勝率5割の場合と、初心者ばかりを相手にして勝率5割の場合とでは、言うまでもなく前者のほうが実力が上であるが、勝率ではこのような事情が反映されない。対戦相手が均等になる総当たり戦の競技では、この欠点が問題となることはないが、チェスなどでは、実力があるプレイヤーほど強い相手との対戦が増えることから、勝率では強さを表すことができないという事態に陥った。

この問題を解消する手段が、イロレーティングである。イロレーティングは、平均的強さのプレイヤーと対戦したときに予想される勝利勝率を数学的に推計し、対数に変換した指標である。実際には、試合のたびに対戦前の相互のレーティングに基づいて勝利確率(期待勝率)を計算し、これと実際の対戦結果との差異に基づいてレーティングを更新する。この作業を試合のたびに繰り返すことで、いずれ平均的強さのプレイヤーと対戦したときの真の勝利確率、すなわち強さを表す適正な値にレーティングが収束するというわけである。

なお、勝率などでも同様であるが、イロレーティングは勝敗を計算の対象としているため、引き分けは勝敗に変換しなければ計算の対象にできない。引き分けの扱いは競技団体によって異なるが、

  • 引き分けは0.5勝0.5敗として計算する。
  • 引き分けは再試合を行うものとして再試合の結果によって計算する。
  • 引き分けの試合はレーティング計算の対象外とする。

という3つの手法が知られている。後述する「勝敗比は積によって推移する」という関係性が満たされるように競技の性質に応じて引き分けの扱いを適切に定める必要がある。なお、イロレーティングの発祥であるチェスでは、引き分けを0.5勝0.5敗とする方法が採用されている。以下では、引き分けの場合について言及しない。

歴史

イロレーティング以前

イロは物理学者であると同時にチェスにおいてはマスターレベルであり、アメリカ合衆国チェス連盟(USCF)でプレーしていた。 当時USCFでは、ケネス・ハークネスが考案したレーティングシステムを採用していた。このシステムでは大会ごとに算出した平均レーティングに準じて個人のレーティングが決定される方法をとっており、例えば著名なトーナメントで優勝した場合、別のトーナメントで優勝した場合に比べて、5倍のポイントが与えられることがあった。

イロレーティングの特徴

イロレーティングは統計的な推定に基づいたシステムである。試合の勝敗を直接的に各プレーヤーの能力を表す基礎的な変数に関連付けるモデルを使用する。

イロの理論では二つの前提をおいている。

  • 試合の勝敗は、プレイヤーの評価値の大小によって決まる - あるプレイヤーがゲームに勝てば、そのゲームでは相手より評価値が高かったとみなす。負けた場合は相手より評価値が低い、引き分けの場合は評価値は同等だったとする。
  • 各ゲームにおけるプレイヤーの評価値は、正規分布の確率変数である - あるプレイヤーの評価値は対局のたびに好調不調で変動はするものの、評価値の平均値は時間の経過とともにゆっくりとしか変化しないと考えた。

プレイヤー毎の標準偏差(レーティング偏差)のばらつきを考慮しない単純化したモデルとしている。

イロレーティングの活用と発展

またイロは各選手の真の実力(=モデルの変数)を推定する簡単な方法を提案している。対戦相手のレーティングとの比較から、予想される勝率を表から比較的簡単に算出することができる。 勝利数が多い選手のレーティングは上方修正され、少ない選手のレーティングは下方修正される。 その調整は、予想勝率を上回った勝利数と下回った勝利数に直線的に比例することになっていた。

イロレーティングは計算のシンプルさから計算機のない時代は特に有用であった。 電卓ひとつで計算できたため、公式発表の前にレーティングを1ポイント以内で計算することができた。これはレーティングの公正性が一般に受け入れられる一助となった。一方でイロレーティングの欠点である、インフレやデフレにより過去のレーティングと比較できないといった問題に対応して発展させたグリコレーティングがマーク・グリックマンにより提案された。また、FIDEではこうした問題への対処として、より正確なレーティングシステムをKaggleでのコンペにより募集している[1]

レーティングの定義

あるプレイヤーのイロレーティング カテゴリ

関連項目 カテゴリ

イロレーティング

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/12/22 09:58 UTC 版)

アルパド・イロ」の記事における「イロレーティング」の解説

詳細は「イロレーティング」を参照 イロチェス競技者レーティングシステム考案によって最もよく知られている。元のレーティングシステム1950年アメリカ合衆国チェス連盟経営者であったケネス・ハークネスによって考案された。イロハークネスレーティングシステムによって得られデータ利用し1960年までに新し計算式開発したこの方法は健全な統計的基盤基づいており、ハークネス方式に対して改良なされていた。新し方式承認され1960年セントルイス開催されアメリカ合衆国チェス連盟会議通過した1970年国際チェス連盟(FIDE)はイロレーティングの採用同意したそれ以降1980年代なかばまで、イロ本人レーティング計算行っていた。当時FIDEがレーティング行っていた競技者の数2000人に満たなかったため、計算するのは比較容易だったその後、FIDEはレーティング管理計算仕事の再割り当て行いイロ除外して別な人々割り当てたまた、ハンドブック新たにレーティング取得」の規則追加され特定のイベントチェス・オリンピアードなど)の試合少なくとも50パーセント成績をあげた競技者には恣意的なレーティングの値(典型的にチェスマスター最低限である2200台)が与えられるイロら[誰?]は新し規則恣意的政治的なものとして反対した[要出典]。

※この「イロレーティング」の解説は、「アルパド・イロ」の解説の一部です。
「イロレーティング」を含む「アルパド・イロ」の記事については、「アルパド・イロ」の概要を参照ください。

ウィキペディア小見出し辞書の「イロレーティング」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「イロレーティング」の関連用語

イロレーティングのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



イロレーティングのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
実用日本語表現辞典実用日本語表現辞典
Copyright © 2025実用日本語表現辞典 All Rights Reserved.
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのイロレーティング (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのアルパド・イロ (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS