ジェットエンジン ジェットエンジンの概要

ジェットエンジン

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/01 04:30 UTC 版)

エアバスA320のジェットエンジン
ナセルに覆われたボーイング737-500CFM56ジェットエンジン(ターボファン)。
アメリカジョージア州ロビンス空軍基地でテスト中のF-15 イーグルのF100ジェットエンジン(ターボファン)。

ジェット推進は、噴流の反作用により推進力を得る。具体的には、噴流が生み出す運動量変化による反作用(反動)としての力がダクトノズルやプラグノズルに伝わり、推進力が生成される。なお、ジェット推進と同様の噴流が最終的に生成されるものであっても、熱力学的に噴流を生成していないもの、例えばプロペラやファン推力などは、通常はジェット推進には含めない。プロペラやファンは、直接的には回転翼による揚力を推力としている。

ジェット推進を利用している熱機関であっても、ジェット推進を利用しているエンジン全てがジェットエンジンと認識されているわけではなく、外部から取り込んだ空気を利用しないもの(典型的には、ロケットエンジン)は、通俗的にはジェットエンジンに含められていない。ジェットエンジンとロケットエンジンは、用途とメカニズムが異なる。具体的には、ジェットエンジンは、推進のためのジェット噴流を生成するために外部から空気を取り入れる必要があるのに対し、ロケットエンジンは酸化剤を搭載して噴出ガスの反動で進むため、宇宙空間でも使用可能である点が強調される[1]。また、ジェットエンジンは吸気側の噴流も推進力に利用する一方、ロケットエンジンの燃焼器より前に噴流は全くない。そのため両者は構造も大気中の効率も大幅に異なり、区別して扱われる。

現代の実用ジェットエンジンでは、噴流の持続的な生成にガスタービン原動機を使っているものが多い。タービンとはラテン語の「回転するもの」という語源から来た連続回転機のことであり、連続的にガスジェットを生成できることが大きなメリットである。また、同原動機の登場により回転翼推力とジェット推力の複合出力エンジンも実現できるようになり、そこでは様々な最適化が可能なことから、多数の形式が生まれた。

さらに、ジェットエンジンは熱機関の分類(すなわち「内燃機関」か「外燃機関」か)からも独立した概念である。つまり、実用化されたジェットエンジンは基本的には内燃機関で分類されるものであったが、実用化されていないものの、原子力ジェットエンジンのような純粋な外燃機関として分類されるジェットエンジンも存在しうる。

概要

ターボファンのアニメーション図

広く実用されているジェットエンジン(ターボジェットターボファンターボプロップターボシャフト)は原動機にガスタービンエンジンを使用しているので、内燃機関としての仕組や熱機関としてのサイクルもそれに準じている。すなわち作業流体・酸化剤として外部から取り込んだ空気を圧縮機で加圧し、燃料(主にケロシン)と混合してブレイトンサイクルの下に連続的に燃焼させ、その燃焼ガスによるジェットの反動そのものを推力として利用したり、羽根車(タービン)を用いて回転力を生成しプロペラファンの揚力に変換し推進力にする。そして回転力の一部は圧縮機を回転させる動力となり、自体の持続運転に使われる。

ガスタービンエンジンは(レシプロエンジンの間欠燃焼と異なり)連続燃焼による連続回転機であるため、連続的なジェットガス生成用の原動機としても最適であった。もしジェットエンジンを間欠燃焼で作るとレシプロエンジンを原動機に使うまでもなくパルスジェットを実現できる。

上記ガスタービン型の航空用エンジンに加え、エアブリージングエンジン(作業流体および酸化剤として空気を吸入・排出する内燃機関の総称でレシプロエンジンも含む)の内、なんらかの方法で空気を圧縮して燃料と混合し、燃焼後に高速の排気流を得て推力とする機関(ラムジェットパルスジェットモータージェットなど)もジェットエンジンとして言及される。このうち圧縮機やタービンを用いず燃焼ガスをそのまま出力として利用するラムジェットとパルスジェットはガスタービンエンジンに対してダクトエンジンに分類されることもある。タービンの入り口温度が限界に達しているために、今より高効率、超高速ジェットエンジンを目指す手段として再び注目されている。

ジェット推進とジェットエンジンは同義語ではないため、空気燃焼以外でジェットを生み、その反動を利用する推進装置のロケット(非エアブリージングエンジン)や水中翼船用のウォータージェットなどはジェットエンジンとして言及されない場合が多い[注釈 1]。また、発電船舶の動力として航空用ガスタービンエンジンが転用される事例も多いが、それらは回転力を利用するだけなのでジェットエンジンとは呼ばれない(単にガスタービンもしくはターボシャフトと記載される)。

航空機の操縦士整備士の資格では、ターボジェット、ターボファン、ターボプロップ、ターボシャフトを『タービン』に分類している。

航空用エンジンには定期点検が義務づけられているが、複雑な形状の部品が入り組んでいるため内部の検査には内視鏡が必要となり、補修にも熟練工が手作業であたるなど非常に手間がかかる[2]

開発の歴史

オハインが最初に試作したHeS 1の断面図(軸対称な下部断面は省略されている)。圧縮機、タービン共に遠心式であり、非常に簡潔な構造である。

ライト兄弟1903年に初めて飛行に成功した時から第二次世界大戦頃まで、飛行機の推進装置の主流はレシプロエンジンプロペラの組み合わせであった。飛行機の軍事的価値が高まるに従い、より高速で上昇性能も優れた機体が希求されるようになったが、レシプロエンジンの構造的制約からくる出力の頭打ちとプロペラ推進の空力的な限界により、機体の性能向上にも陰りが見え始めていた。そのような潮流の中で新しい航空機用推進機関が検討されるようになり、1930年代にはイギリスナチス・ドイツを中心として本格的な研究・開発が始められた。この時期に今日ロケットやジェットエンジンとして知られる噴流推進機関の基本形が考案されることとなり、ガスタービン型のジェットエンジン(ターボジェットエンジン)開発も同時に始まっている。圧縮機とタービンを備えたガスタービンの概念そのものは1791年にイギリスのジョン・バーバー英語版 によってすでに提出されていたが、それから100年以上経った1903年になってノルウェーの技術者エギディアス・エリング (Ægidius Elling) が初めて実動させることに成功した。主な課題はタービン出力から圧縮機を回転させることにあった。また、以後のガスタービン実用化に際しては耐熱合金の開発や、熱膨張によるタービンブレードの亀裂を克服する必要があった。

ガスタービン型ジェットエンジン研究の初期にはタービン出力のみで圧縮機を回転させることが難しかったため、折衷案としてレシプロエンジンによる圧縮機駆動を行うモータージェットも考案された。この形式を採用した代表的な機体は1940年に初飛行したイタリアカプロニ・カンピーニ N.1である。当時はファシスト党プロパガンダの影響もあってプロペラのない先進的な飛行機として注目されたが、性能は通常のレシプロ機に及ばず、ジェット流により得られる推力も微々たるものであった。なお、カプロニ・カンピーニに先立ってルーマニアアンリ・コアンダが製作したコアンダ=1910というモータージェット機が存在し、第二次世界大戦中には日本旧ソ連でいくつかのモータージェット機開発が見られたが、結果的に後の技術史へ大きな影響を与えることはなかった。

世界初のターボジェット機He178のレプリカ
フランク・ホイットルの名が刻まれた支柱の上に設置されたグロスター E.28/39のレプリカ
Me262(復元機)

現代につながるジェットエンジンは、イギリス空軍の技術士官フランク・ホイットルドイツの技術者ハンス・フォン・オハインがそれぞれ独立に考え出したターボジェットエンジンである[3]。ホイットルは1920年代からジェットエンジンの研究を始め、1937年4月にパワージェットと呼ばれるターボジェットを完成させた。ホイットルのチームがジェットエンジンの実験を最初に行なったとき、燃料の供給を止めた後に燃料が逆流して溢れ出し、それが燃え尽きるまでエンジンが止まらずパニックになりそうになったというエピソードが残っている。一方、オハインは当時の航空機業界の大物だったエルンスト・ハインケルに招聘され、ハインケル1936年からジェット推進機関の研究を始めた。そうしてオハインが水素燃料式のHeS 1を経て完成させたHeS 3He178に搭載され、同機は1939年8月に世界初のターボジェットエンジンによる飛行を成し遂げた。またホイットルが開発に参加したターボジェット機グロスター E.28/39はHe178に約2年遅れて1941年5月に本格的な飛行を行っている。

こうして第二次世界大戦後半にはドイツ、イギリス、アメリカでジェットエンジンを搭載した航空機が次々に開発された。ドイツではハインケル以外の航空機メーカーでもターボジェットエンジンが完成し、ユンカースBMW軸流式圧縮機を備えたターボジェットを製造した(なおHe178やE.28/39は信頼性は高いが圧縮率の低い遠心式圧縮機を採用していた)。製造されたエンジンは世界初のジェット戦闘機であるMe262や世界初のジェット爆撃機であるAr234等に搭載され大戦末期に実際に運用されている。また、パルスジェット推進のV1飛行爆弾が実戦投入され、ラムジェットを用いた奇抜な兵器(トリープフリューゲルアレクサンダー・リピッシュが設計したP.13aなど)もいくつか計画された。アメリカ、イギリスでは遠心式圧縮機を備えたジェットエンジンが実用化され、グロスター ミーティアをはじめとしたジェット戦闘機開発が進んだ。戦後、ドイツで製造・計画されたジェット推進の軍用機はアメリカや旧ソ連で徹底的に研究され、各国が独自に進めてきた技術研究と相まってジェットエンジンを爆発的に普及させた。戦時中の日本でもドイツのBMW 003を参考に軸流圧縮式ターボジェットのネ20が完成し、試作ジェット攻撃機橘花の飛行を成功させたが実戦には間に合わなかった[4]


注釈

  1. ^ ジェットエンジンが実用化される前の未熟な時代には、様々な呼称や代替構成要素の実験機が用いられ、例えば、モータージェット機カプロニ・カンピーニ N.1はカンピーニロケットとも呼ばれ、戦前の日本の研究機関では現在で言うところのジェット推進のことをロケット推進と言われた。
  2. ^ この場合、燃料の質量は空気の質量に比べ小さいと仮定し、無視している。
  3. ^ 推進効率 ηは、最終的に機体の推進に使われた仕事率 TV と、エンジンが発生する出力 P との比で表され、
    と書ける。V := V となるように排気速度を調節してやれば最大の効率 η = 1.0 が得られるように思えるが、このとき推力は
    となるので現実には達成できない。プロペラ推進の場合は η = 0.8 程度が限度であり、ジェット推進の場合はそれより低くなる。
  4. ^ アニュラ型の燃焼缶は厳密には内外2枚のライナの前部はカウルと呼ばれる覆いになっている。
  5. ^ アフターバーナーとはもともとゼネラル・エレクトリックでの呼称で、特許商標としての競合を避けるためにロールス・ロイスではリヒートプラット・アンド・ホイットニーではオーギュメンターという名称が使用されている。
  6. ^ レシプロ機関と異なりジェットエンジンでは、吸い込んだ空気の25%程しか酸素を利用していないため、排気中には75%ほどが残っている。
  7. ^ デフューザーによってガスの流速を落とす。ノズル内にはフレームホルダーも備える。アフターバーナーを使用しない間は、ノズルは排気ダクトとして働く。
  8. ^ 「逆噴射装置」とも呼ばれるが、エンジン内の圧縮機とタービンが逆回転して吸気口と排気口が入れ替わるわけではない。

出典

  1. ^ 佐藤 2005, pp. 190, 192
  2. ^ ASCII.jp:JALのジェットエンジン整備はミリ単位の繊細な作業だった!
  3. ^ 佐藤 2005, p. 189
  4. ^ 佐藤 2005, p. 190
  5. ^ a b c d e 見森昭編 『タービン・エンジン』 社団法人日本航空技術協会、2008年3月1日第1版第1刷発行、ISBN 9784902151329
  6. ^ a b c 佐藤 2005, p. 202
  7. ^ 松岡増二著 『新航空工学講座8 ジェット・エンジン(構造編)』 日本航空技術協会 ISBN 4-930858-48-8
  8. ^ JAL - 航空豆知識
  9. ^ 佐藤 2005, p. 191
  10. ^ a b 佐藤 2005, p. 196
  11. ^ 齊藤喜夫, 遠藤征紀, 松田幸雄, 杉山七契, 菅原昇, 山本一臣「コア分離型ターボファン・エンジン」『航空宇宙技術研究所報告』TR-1289、航空宇宙技術研究所、1996年4月、1-7頁、CRID 1523388080992312960ISSN 0389-4010 
  12. ^ 佐藤 2005, p. 215
  13. ^ The heart of the SR-71 "Blackbird" : The mighty J-58 engine
  14. ^ Pratt & Whitney J58 Turbojet
  15. ^ 佐藤 2005, p. 216






ジェットエンジンと同じ種類の言葉


固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ジェットエンジン」の関連用語

ジェットエンジンのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ジェットエンジンのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのジェットエンジン (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS