炭化ホウ素とは? わかりやすく解説

炭化ホウ素

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/05/10 10:37 UTC 版)

ナビゲーションに移動 検索に移動
炭化ホウ素
識別情報
CAS登録番号 12069-32-8 
PubChem 123279
ChemSpider 109889 
特性
化学式 B4C
モル質量 55.255 g/mol
外観 黒または灰色の粉末 無臭
密度 2.52 g/cm3, 固体
融点

2763 °C, 3036 K, 5005 °F

沸点

3500 °C, 3773 K, 6332 °F

への溶解度 不溶
酸解離定数 pKa 6–7 (20 °C)
構造
結晶構造 三方晶
危険性
安全データシート(外部リンク) External MSDS
関連する物質
関連物質 窒化ホウ素
特記なき場合、データは常温 (25 °C)・常圧 (100 kPa) におけるものである。

炭化ホウ素(組成式は ほぼB4C)はホウ素炭素からなる超硬素材で、戦車装甲や、防弾チョッキなど様々な工業的用途がある。モース硬度は9.497で、立方晶窒化ホウ素や、ダイヤモンドに次ぐ硬さを持つ。[1]

炭化ホウ素は金属ホウ化物の副産物として19世紀に発見されていたが、その化学組成式は未知で、それがB4Cと推定されるのには1930年代以降であった。[2] しかし、常に若干炭素が少ないので化学式的にはそれがきっちり4:1の原子数比であるか否かについては議論があった。X線回折による結果その組成はかなり複雑で、炭素-ホウ素結合と正二十面体B12の組合せで出来ている事がわかった。この特徴は単純なB4C組成式を否定するものである。[3] B12構造単位があることから、理想的な炭化ホウ素の単位はしばしばB4Cではなく、B12C3と書かれ、炭素の欠乏を考慮にいれると、B12C3とB12C2の単位の組合せとなる。

炭化ホウ素は長寿命の放射性同位体を作ること無く中性子を吸収することから原子力発電所から出る中性子線の吸収剤として魅力的な性質を持つ。核施設では遮蔽や、制御棒や停止ペレット等に使われる。制御棒では、表面積を増やすために粉体にして用いられる。[4]

結晶構造

B4C構成単位. 緑の玉と正二十面体はホウ素原子で、黒い玉は炭素原子である。[5]
B4C 結晶構造の一部

炭化ホウ素は金属ホウ化物の典型的な複合構造を持つ。B12の正二十面体構造が、三方晶構造をとり、(空間群: R3m (No. 166), 格子定数: a = 0.56 nm, c = 1.212 nm)炭素-ホウ素-炭素チェーンが結晶単位の中心にあり、その両端の炭素が近くにある3つのホウ素の正二十面体を繋いでいる。この構造は層状になっていて、B12の正二十面体と橋掛けしている炭素がc面に平行にネットワークを為していて、c軸にそって積み重なっている。格子はB12正二十面体 B6正八面体の二つのサブユニットで出来ている。B6正八面体は小さいため自分達同士でつながることは出来ず、近傍の層の正二十面体B12を繋ぐこととなりこれが炭素の層の結合の強さを弱めることとなっている。[5]

B12構造単位があることから、理論上の炭化ホウ素の化学式はB4Cではなく、B12C3と表し、炭素の少ない炭化ホウ素はB12C3とB12C2の単位の組合せとなっている。[3][6] いくつかの研究によると、炭素原子がホウ素の20面体の中に取り込まれ炭素が多い端では化学量が(B11C)CBC = B4Cで、ホウ素が多い側ではB12(CBB) = B14Cとなる。平均的にみられるものだと、原子量比はB12(CBC) = B6.5Cとなる。[7]

性質

炭化ホウ素は、非常に硬い堅牢性と高い中性子吸収断面積(つまり中性子遮蔽によい特性)、電離放射線およびほとんどの化学反応に対する安定性を持つことで知られている。[4] ビッカース硬さ (38 GPa) および破壊靱性 (3.5 MPa·m1/2) はダイヤモンドに近い(それぞれ115 GPa および5.3 MPa·m1/2)。[8]

製法

炭化ホウ素は1899年にアンリ・モアッサンによって初めて合成され、[6] アーク炉で、 酸化ホウ素炭素ともしくは炭素の存在下のマグネシウムとの反応で合成される。炭素との場合、その反応は炭化ホウ素の融点より上で起き大量の一酸化炭素を放出する: [9]

マグネシウムとの反応の場合、黒鉛炉で起き、マグネシウムの副産物は酸処理によって除去される。[10]

用途

参照

  1. ^ “Rutgers working on body armor”. Asbury Park Press. (2012年8月11日). http://www.app.com/article/20120811/NJNEWS/308110051/Rutgers-working-on-body-armor 2012年8月12日閲覧. "... boron carbide is the third-hardest material on earth." 
  2. ^ Ridgway, Ramond R "Boron Carbide", European Patent CA339873 (A), publication date: 1934-03-06
  3. ^ a b Musiri M. Balakrishnarajan, Pattath D. Pancharatna and Roald Hoffmann (2007). “Structure and bonding in boron carbide: The invincibility of imperfections”. New J. Chem. 31 (4): 473. doi:10.1039/b618493f. http://www.rsc.org/Publishing/Journals/nj/Hotarticles/B618493F_Hoffmann.asp. 
  4. ^ a b Weimer, p. 330
  5. ^ a b Zhang F X, Xu F F, Mori T, Liu Q L, Sato A and Tanaka T (2001). “Crystal structure of new rare-earth boron-rich solids: REB28.5C4”. J. Alloys Compd. 329: 168. doi:10.1016/S0925-8388(01)01581-X. 
  6. ^ a b Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (英語) (2nd ed.). Butterworth-Heinemann英語版. p. 149. ISBN 978-0-08-037941-8
  7. ^ Boron Carbide: Structure, Properties, and Stability under Stress. Vladislav Domnich, Sara Reynaud, Richard A. Haber, and Manish Chhowalla, J. Am. Ceram. Soc., 94 [11] 3605–3628 (2011) DOI: 10.1111/j.1551-2916.2011.04865. Full Text Online
  8. ^ Solozhenko, V. L.; Kurakevych, Oleksandr O.; Le Godec, Yann; Mezouar, Mohamed; Mezouar, Mohamed (2009). “Ultimate Metastable Solubility of Boron in Diamond: Synthesis of Superhard Diamondlike BC5”. Phys. Rev. Lett. 102 (1): 015506. Bibcode2009PhRvL.102a5506S. doi:10.1103/PhysRevLett.102.015506. PMID 19257210. 
  9. ^ Weimer, p. 131
  10. ^ Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN 0-07-049439-8

参考文献

外部リンク


炭化ホウ素

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/05 01:17 UTC 版)

ホウ素」の記事における「炭化ホウ素」の解説

詳細は「炭化ホウ素」を参照 炭化ホウ素は、酸化ホウ素炭素とともに電気炉熱分解することによって得られるセラミックス材料である。 2 B 2 O 3 + 7 C ⟶ B 4 C + 6 CO {\displaystyle {\ce {2B2O3 + 7C -> B4C + 6CO}}} 炭化ホウ素の構造はほぼB4Cのみであるものの、炭素量は化学量論比よりも明確に低い値を示す。これは炭化ホウ素の非常に複雑な構造起因しており、炭化ホウ素はホウ素B12クラスターとして存在しているB12C3の分子式表される構造を取るものの、3つの炭素原子のうちの1つホウ素原子置換されやすいため、炭素原子数の少な単位クラスター混在し構造となる。また、正八面構造のB6クラスター混在しており、炭素量が少なくなる要因となる。このような構造起因して、炭化ホウ素は単位重量あたりの構造強さ優れている。そのため、炭化ホウ素は戦車などの装甲ボディアーマーのほか、多く構造材として利用される。炭化ホウ素(特に10B)は、長寿命放射性核種生成することなく中性子吸収する能力有しているため、原子力発電所において発生する中性子線吸収材として有用である。そのため、10B濃度制御した炭化ホウ素が原子炉における遮蔽材や制御棒などに利用される制御棒としての利用においてはその表面積増やすためにしばしば粉末状用いられ、また粉末焼結させた円筒ペレット状でも用いられる

※この「炭化ホウ素」の解説は、「ホウ素」の解説の一部です。
「炭化ホウ素」を含む「ホウ素」の記事については、「ホウ素」の概要を参照ください。

ウィキペディア小見出し辞書の「炭化ホウ素」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「炭化ホウ素」の関連用語

炭化ホウ素のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



炭化ホウ素のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの炭化ホウ素 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのホウ素 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS