約数
![]() | この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。 |
数学において整数 N の約数(やくすう、英: divisor)とは、N を割り切る整数またはそれらの集合のことである。割り切るかどうかということにおいて、符号は本質的な問題ではないため、N を正の整数(自然数)に、約数は正の数に限定して考えることも多い。自然数や整数の範囲でなく文字式や抽象代数学における整域などで「約数」と同様の意味を用いる場合は、「因数」(いんすう)、「因子」(いんし、英: factor)が使われることが多い。特に素数である約数を「素因数」と言う(素約数とも言われた[1][2])。
整数 a が整数 N の約数であることを、記号 | を用いて a | N と表す。
約数の定義を式で表すと、「整数 a ≠ 0 が N の約数であるとは、ある整数 b をとると N = ab が成立することである」であるが、条件「a ≠ 0」を外すこともある(その場合、N = 0 のとき 0 も約数になる)。
自然数(正の整数)で考えている文章では、ことわりがなくても「約数」を前提にしていることは多い。
定義
整数 a ≠ 0 が N の約数であるとは、「ある整数 b をとると N = ab が成立することである」であるが、条件「a ≠ 0」を外すこともある。このときは、N = 0 のときに限り 0 も約数になる。約数が無数にある整数は 0 だけである。
負の符号は本質的な問題ではないため、ここでは以下現れる数はすべて自然数とする。
どのような自然数 N に対しても、1 と自分自身 N は N の約数である。2 以上の自然数はさらに、約数の個数が 2 であるかそれより大かで分けられる。1 と自分自身以外に約数をもたない自然数を素数といい、そうでない自然数を合成数という。合成数は重複を許した2個以上の素数の積である。
例えば、
は素数であるが、12 の約数は、
- 12 ÷ 1 = 12
- 12 ÷ 2 = 6
- 12 ÷ 3 = 4
- 12 ÷ 4 = 3
- 12 ÷ 6 = 2
- 12 ÷ 12 = 1
より、1, 2, 3, 4, 6, 12 の6個である。
合成数の列は
例えば 60 は約数の個数が12個もあり、もれなく挙げるのはたいへんである。そこで、「a が N の約数ならば、N/a も N の約数である」ことを使うと、半分程度の労力で済む。
一般に、約数の個数を求めるとなると、素因数分解が効果を発揮する。
- N の素因数分解を N = 2a13a25a3⋯ とすると、N の約数の個数は (a1 + 1)(a2 + 1)(a3 + 1)⋯個
素因数分解の可能性と一意性(特に一意性)は自明な定理ではない(これを算術の基本定理という)。しかし、これにより約数を式で表すことができる:
- 60 = 22 × 3 × 5 より、
- 60 の約数:2a × 3b × 5c (0 ≤ a ≤ 2, 0 ≤ b ≤ 1, 0 ≤ c ≤ 1)
約数に関する定義と性質
- 整数 N に対して、±1, ±N を N の自明な約数という。自明でない約数を真の約数という。
- 0 の約数は、全ての(0 でない)整数である。
- 自然数 N の正の約数の個数を d(N) で表す。これは約数関数 σx の x = 0 の場合である。
- N の素因数分解を N = 2a13a25a3⋯ とすると、
- d(N) = (a1 + 1)(a2 + 1)(a3 + 1)⋯
約数の個数
自然数 N の正の約数の個数を d(N) で表す。
- N の素因数分解を N = 2a13a25a3… とすると、d(N) = (a1 + 1)(a2 + 1)(a3 + 1)…
個数 | 数 | 概要 | OEIS |
---|---|---|---|
1
|
1 | ||
2
|
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, … | 素数 | オンライン整数列大辞典の数列 A000040 |
3
|
4, 9, 25, 49, 121, 169, 289, 361, 529, 841, … | 素数の自乗 | オンライン整数列大辞典の数列 A001248 |
4
|
6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, … | 素数の立方 pq(p, q は異なる素数) |
オンライン整数列大辞典の数列 A030513 |
5
|
16, 81, 625, 2401, 14641, 28561, 83521, … | 素数の4乗 | オンライン整数列大辞典の数列 A030514 |
6
|
12, 18, 20, 28, 32, 44, 45, 50, 52, 63, 68, … | 素数の5乗 pq2(p, q は異なる素数) |
オンライン整数列大辞典の数列 A030515 |
7
|
64, 729, 15625, 117649, 1771561, … | 素数の6乗 | オンライン整数列大辞典の数列 A030516 |
8
|
24, 30, 40, 42, 54, 56, 66, 70, 78, 88, … | 素数の7乗 楔数 pq3(p, q は異なる素数) |
オンライン整数列大辞典の数列 A030626 |
9
|
36, 100, 196, 225, 256, 441, 484, 676, … | 素数の8乗 p2q2(p, q は異なる素数) |
オンライン整数列大辞典の数列 A030627 |
10
|
48, 80, 112, 162, 176, 208, 272, 304, 368, … | 素数の9乗 pq4(p, q は異なる素数) |
オンライン整数列大辞典の数列 A030628 |
11
|
1024, 59049, 9765625, 282475249, … | 素数の10乗 | オンライン整数列大辞典の数列 A030629 |
12
|
60, 72, 84, 90, 96, 108, 126, 132, 140, 150, … | 素数の11乗 p2q3 pq5 pqr2(p, q, r は異なる素数) |
オンライン整数列大辞典の数列 A030630 |
13
|
4096, 531441, 244140625, … | 素数の12乗 | オンライン整数列大辞典の数列 A030631 |
14
|
192, 320, 448, 704, 832, 1088, 1216, 1458, … | 素数の13乗 pq6(p, q は異なる素数) |
オンライン整数列大辞典の数列 A030632 |
15
|
144, 324, 400, 784, 1936, 2025, 2500, 2704, … | 素数の14乗 p2q4(p, q は異なる素数) |
オンライン整数列大辞典の数列 A030633 |
16
|
120, 168, 210, 216, 264, 270, 280, 312, 330, … | オンライン整数列大辞典の数列 A030634 | |
17
|
65536, 43046721, 152587890625, … | 素数の16乗 | オンライン整数列大辞典の数列 A030635 |
18
|
180, 252, 288, 300, 396, 450, 468, 588, 612, … | オンライン整数列大辞典の数列 A030636 | |
19
|
262144, 387420489, 3814697265625, … | 素数の18乗 | オンライン整数列大辞典の数列 A030637 |
20
|
240, 336, 432, 528, 560, 624, 648, 810, 816, … | オンライン整数列大辞典の数列 A030638 | |
21
|
576, 1600, 2916, 3136, 7744, 10816, … | 素数の20乗 p2q6(p, q は異なる素数) |
オンライン整数列大辞典の数列 A137484 |
22
|
3072, 5120, 7168, 11264, 13312, 17408, … | 素数の21乗 pq10(p, q は異なる素数) |
オンライン整数列大辞典の数列 A137485 |
23
|
4194304, 31381059609, 2384185791015625, … | 素数の22乗 | オンライン整数列大辞典の数列 A137486 |
24
|
360, 420, 480, 504, 540, 600, 630, 660, 672, … | オンライン整数列大辞典の数列 A137487 | |
25
|
1296, 10000, 38416, 50625, 194481, … | 素数の24乗 p4q4(p, q は異なる素数) |
オンライン整数列大辞典の数列 A137488 |
26
|
12288, 20480, 28672, 45056, 53248, 69632, … | 素数の25乗 pq12(p, q は異なる素数) |
オンライン整数列大辞典の数列 A137489 |
27
|
900, 1764, 2304, 4356, 4900, 6084, 6400, … | オンライン整数列大辞典の数列 A137490 | |
28
|
960, 1344, 1728, 2112, 2240, 2496, 3264, … | オンライン整数列大辞典の数列 A137491 | |
29
|
268435456, 22876792454961, … | 素数の28乗 | オンライン整数列大辞典の数列 A137492 |
30
|
720, 1008, 1200, 1584, 1620, 1872, 2268, … | オンライン整数列大辞典の数列 A137493 | |
31
|
1073741824, 205891132094649, … | 素数の30乗 | オンライン整数列大辞典の数列 A139571 |
32
|
840, 1080, 1320, 1512, 1560, 1848, 1890, … | オンライン整数列大辞典の数列 A175742 | |
33
|
9216, 25600, 50176, 123904, … | 素数の32乗 p2q10(p, q は異なる素数) |
オンライン整数列大辞典の数列 A175743 |
34
|
196608, 327680, 458752, 720896, … | 素数の33乗 pq16(p, q は異なる素数) |
オンライン整数列大辞典の数列 A175744 |
35
|
5184, 11664, 40000, 153664, 250000, … | 素数の34乗 p4q6(p, q は異なる素数) |
オンライン整数列大辞典の数列 A175745 |
36
|
1260, 1440, 1800, 1980, 2016, 2100, … | オンライン整数列大辞典の数列 A175746 | |
37
|
68719476736, 150094635296999121, … | 素数の36乗 | オンライン整数列大辞典の数列 A139572 |
38
|
786432, 1310720, 1835008, … | 素数の37乗 pq18(p, q は異なる素数) |
オンライン整数列大辞典の数列 A175747 |
39
|
36864, 102400, 200704, 495616, … | 素数の38乗 p2q12(p, q は異なる素数) |
オンライン整数列大辞典の数列 A175748 |
40
|
1680, 2160, 2640, 3024, 3120, 3240, … | オンライン整数列大辞典の数列 A175749 | |
41
|
1099511627776, 12157665459056928801, … | 素数の40乗 | オンライン整数列大辞典の数列 A139573 |
42
|
2880, 4032, 4800, 6336, 7488, 9408, … | オンライン整数列大辞典の数列 A175750 | |
43
|
4398046511104, 109418989131512359209, … | 素数の42乗 | オンライン整数列大辞典の数列 A139574 |
44
|
15360, 21504, 27648, 33792, 35840, … | オンライン整数列大辞典の数列 A175751 | |
45
|
3600, 7056, 8100, 15876, 17424, 19600, … | オンライン整数列大辞典の数列 A175752 | |
46
|
12582912, 20971520, 29360128, … | 素数の45乗 pq22(p, q は異なる素数) |
オンライン整数列大辞典の数列 A175753 |
47
|
70368744177664, 8862938119652501095929, … | 素数の46乗 | オンライン整数列大辞典の数列 A139575 |
48
|
2520, 3360, 3780, 3960, 4200, 4320, … | オンライン整数列大辞典の数列 A175754 | |
49
|
46656, 1000000, 7529536, 11390625, … | 素数の48乗 p6q6(p, q は異なる素数) |
オンライン整数列大辞典の数列 A175755 |
50
|
6480, 9072, 14256, 16848, 22032, … | オンライン整数列大辞典の数列 A175756 |
上記の表で先頭の数はオンライン整数列大辞典の数列 A005179を参照。
- 正の約数の個数の列は
- 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, …(オンライン整数列大辞典の数列 A000005)
- 1, 3, 5, 8, 10, 14, 16, 20, 23, 27, 29, 35, 37, 41, 45, 50, 52, 58, 60, 66, 70, 74, 76, 84, 87, 91, 95, 101, …(オンライン整数列大辞典の数列 A006218)
- 正の約数の個数の総和が自身の整数倍になる数の列は
- 1, 4, 5, 15, 42, 44, 47, 121, 336, 340, 347, 930, 2548, …(オンライン整数列大辞典の数列 A050226)
- このときの約数の個数の総和はオンライン整数列大辞典の数列 A218464を参照。
- 約数の個数が三角数になる三角数の列は
- 約数の個数が三角数になる三角数で前の約数の個数を上回る数の列は
- 自身の約数の個数で割りきれる数は
- 1, 2, 8, 9, 12, 18, 24, 36, 40, 56, 60, 72, 80, 84, 88, 96, 104, 108, 128, 132, 136, 152, 156, 180,…(オンライン整数列大辞典の数列 A033950)
約数の和
自然数 N の正の約数の和を、約数関数 σ(N) で表す。素因数分解により、正の約数の和も式で表すことができる。
N の素因数分解を N = 2a13a25a3… とすると、