厳密非回文数とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 厳密非回文数の意味・解説 

厳密非回文数

(Strictly non-palindromic number から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/08/15 23:52 UTC 版)

ナビゲーションに移動 検索に移動

厳密非回文数(げんみつひかいぶんすう、strictly non-palindromic number)とは、2 ≦ bn − 2 である全ての b 進法における位取り記数法で表記した n回文数にならないような整数 n のことである。例えば、10進法の6(10)は、2進法では"110(2)"、3進法では"20(3)"、4進法では"12(4)"と表記され、いずれも回文数ではないので、6(10)は厳密非回文数である。

別の例として、19(10)b進法(2 ≦ b ≦ 17)で表すと、以下のようになる。

b 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
b進法の19(10) 10011 201 103 34 31 25 23 21 19 18 17 16 15 14 13 12

いずれも回文数ではないので、19(10)は厳密非回文数である。

厳密非回文数を小さい順に並べると、次のようになる。オンライン整数列大辞典の数列 A016038

0, 1, 2, 3, 4, 6, 11, 19, 47, 53, 79, 103, 137, 139, 149, 163, 167, 179, 223, 263, 269, 283, 293, 311, 317, 347, 359, 367, 389, 439, 491, 563, 569, 593, 607, 659, 739, 827, 853, 877, 977, 983, 997, ...

ある整数 n が厳密非回文数であるかどうかを調べるには、n − 2進法までの全てにおいて、 n が回文数でないことを確認する必要がある。上限を n − 2 としている理由は、それより上については回文数になるかならないかが確定しているからである。

  • n ≧ 3 の任意の n は、n - 1進法で"11(n-1)"となるので、nn - 1 進法で回文数となる。
  • n ≧ 2 の任意の n は、n進法で"10(n)"となるので、nn 進法では回文数とならない。
  • n ≧ 1 の任意の n は、b > n の全ての b 進数において1桁の数となり、すなわち回文数となる。

上記の19の場合、b > 17 のb進数では次のように表記される。

b 18 19 19より上
b進法の19(10) 11 10 1桁の数

n ≦ 4 の場合、調べる対象が存在しないので、全て厳密非回文数となる。

参考資料




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  厳密非回文数のページへのリンク

辞書ショートカット

すべての辞書の索引

「厳密非回文数」の関連用語

厳密非回文数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



厳密非回文数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの厳密非回文数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS