イデユコゴメ綱とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > イデユコゴメ綱の意味・解説 

イデユコゴメ綱

(Cyanidiophyceae から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/01/28 07:52 UTC 版)

イデユコゴメ綱(イデユコゴメこう、学名: Cyanidiophyceae)は、草津温泉[3]のような酸性温泉に生育する特異な単細胞性紅藻の一群である。


注釈

  1. ^ この写真はウィキメディア・コモンズ[1]ではイデユコゴメ属の一種 (Cyanidium sp.) とされているが、同一の図がAlgaeBase中[2]ではG. sulphurariaとされている。形態的には後者が妥当である。
  2. ^ ウィキメディア・コモンズ[1]での写真説明には blue-green algae (ふつう藍藻を意味する) とあるが、同時に Cyanidium との記述がある。
  3. ^ a b イデユコゴメ属のみをイデユコゴメ科とし、シアニディオコックス属とシアニディオシゾン属をシアニディオシゾン科として分けることもある[28]
  4. ^ Galdieria maximaと誤同定されていた株を含む[28]

出典

  1. ^ a b https://commons.wikimedia.org/wiki/メインページ?uselang=ja
  2. ^ https://www.algaebase.org/search/species/detail/?species_id=36734
  3. ^ 長島 秀行 (1995). “群馬県草津温泉の微細藻類”. 温泉科学 45: 26-30. NAID 10026943778. 
  4. ^ a b c d e Seckbach, J. (1999). “The Cyanidiophyceae: Hot spring acidophilic algae”. In J. Seckbach. Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publishers. pp. 425-435. ISBN 978-1-4020-1863-3 
  5. ^ a b c d e f g h i j k l m Seckbach, J. (2010). “Overview on cyanidian biology”. In Seckbach, J. & Chapman, D.J.. Red Algae in the Genomic Age. Springer, Netherlands. pp. 345-356. ISBN 978-90-481-3794-7 
  6. ^ Bailey, R. W. & Staehelin, L. A. (1968). “The chemical composition of isolated cell walls of Cyanidium caldarium”. Microbiology 54: 269-276. 
  7. ^ Kuroiwa, T., Kawazu, T., Takahashi, H., Suzuki, K., Ohta, N. & Kuroiwa, H. (1994). “Comparison of ultrastructures between the ultra-small eukaryote Cyanidioschyzon merolae and Cyanidium caldarium”. Cytologia 59: 149-158. doi:10.1508/cytologia.59.149. 
  8. ^ a b c Allen, M. B. (1959). “Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte”. Archiv für Mikrobiologie 32: 270-277. 
  9. ^ Stec, B., Troxler, R. F. & Teeter, M. M. (1999). “Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly”. Biophysical Journal 76: 2912-2921. doi:10.1016/S0006-3495(99)77446-1. 
  10. ^ Takaichi, S., Yokoyama, A., Mochimaru, M., Uchida, H. & Murakami, A. (2016). “Carotenogenesis diversification in phylogenetic lineages of Rhodophyta”. J. Phycol. 52: 329–338. doi:10.1111/jpy.12411. 
  11. ^ Hirabaru, C., Izumo, A., Fujiwara, S., Tadokoro, Y., Shimonaga, T. & al. (2010). “The primitive rhodophyte Cyanidioschyzon merolae contains a semiamylopectin-type, but not an amylose-type, α-glucan”. Plant Cell Physiol. 51: 682-693. doi:10.1093/pcp/pcq046. 
  12. ^ Shimonaga, T., Fujiwara, S., Kaneko, M., Izumo, A., Nihei, S., Francisco Jr, P. B., ... & Tsuzuki, M. (2007). “Variation in storage α-polyglucans of red algae: amylose and semi-amylopectin types in Porphyridium and glycogen type in Cyanidium”. Marine Biotechnology 9: 192-202. doi:10.1007/s10126-006-6104-7. 
  13. ^ Pade, N., Linka, N., Ruth, W., Weber, A. P. & Hagemann, M. (2015). “Floridoside and isofloridoside are synthesized by trehalose 6‐phosphate synthase‐like enzymes in the red alga Galdieria sulphuraria”. New Phytologist 205: 1227-1238. doi:10.1111/nph.13108. 
  14. ^ Reeb, V. & Bhattacharya, D. (2010). “The thermo-acidophilic Cyanidiophyceae (Cyanidiales)”. In Seckbach, J. & Chapman, D.J.. Red Algae in the Genomic Age. Springer Netherlands. pp. 409-426. ISBN 978-90-481-3794-7 
  15. ^ Gross, W. & Schnarrenberger, C. (1995). “Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria”. Plant Cell Physiol. 36: 633-638. doi:10.1093/oxfordjournals.pcp.a078803. 
  16. ^ Oesterhelt, C. & Gross, W. (2002). “Different sugar kinases are involved in the sugar sensing of Galdieria sulphuraria”. Plant Physiol. 128: 291-299. doi:10.1104/pp.010553. 
  17. ^ Seckbach, J. & Libby, W. F. (1970). “Vegetative life on Venus? Or investigations with algae which grow under pure CO2 in hot acid media at elevated pressures”. Space Life Sciences 2: 121-143. doi:10.1017/S0074180900102645. 
  18. ^ 兼崎 友 (2017). “単細胞紅藻シアニジウム類の多様性と重金属耐性”. 植物科学最前線 8: 135-140. 
  19. ^ Nagasaka, S., Nishizawa, N.K., Negishi, T., Satake, K., Mori, S. & Yoshimura, E. (2002). “Novel iron-storage particles may play a role in aluminum tolerance of Cyanidium caldarium”. Planta 215: 399–404. doi:10.1007/s00425-002-0764-y. 
  20. ^ Yoshimura, E., Nagasaka, S., Sato, Y., Satake, K. & Mori, S. (1999). “Extraordinary high aluminium tolerance of the acidophilic thermophilic alga, Cyanidium caldarium”. Soil. Sci. Plant Nutr. 45: 721–724. doi:10.1080/00380768.1999.10415835. 
  21. ^ Ju, X., Igarashi, K., Miyashita, S. I., Mitsuhashi, H., Inagaki, K., Fujii, S. I., ... & Minoda, A. (2016). “Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria”. Bioresource Technology 211: 759-764. doi:10.1016/j.biortech.2016.01.061. 
  22. ^ 長島秀行 (1993). 堀 輝三 (編). ed. 藻類の生活史集成. 褐藻・紅藻類. 内田老鶴圃. pp. 184–189. ISBN 978-4753640584 
  23. ^ Ohta, N., Sato, N. & Kuroiwa T. (1998). “Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide sequence”. Nucleic Acids Res. 26: 5190–5198. doi:10.1093/nar/26.22.5190. 
  24. ^ Ohta, N., Matsuzaki, M., Misumi, O., Miyagishima, SY., Nozaki, H., Tanaka, K., Shin-I, T., Kohara, Y. & Kuroiwa, T. (2003). “Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae”. DNA Res. 10: 67–77. doi:10.1093/dnares/10.2.67. 
  25. ^ Matsuzaki, M., Misumi, O., Shin-I, T., Maruyama, S., Takahara, M., Miyagishima, SY., Mori, T., Nishida, K., Yagisawa, F., Nishida, K., Yoshida, Y., Nishimura, Y., Nakao, S., Kobayashi, T., Momoyama, Y., Higashiyama, T., Minoda, A., Sano, M., Nomoto, H., Oishi, K., Hayashi, H., Ohta, F., Nishizaka, S., Haga, S., Miura, S., Morishita, T., Kabeya, Y., Terasawa, K., Suzuki, Y., Ishii, Y., Asakawa, S., Takano, H., Ohta, N., Kuroiwa, H., Tanaka, K., Shimizu, N., Sugano, S., Sato, N., Nozaki, H., Ogasawara, N., Kohara, Y. & Kuroiwa, T. (2004). “Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D.”. Nature 428: 653-657. doi:10.1038/nature02398. 
  26. ^ Barbier, G., Oesterhelt, C., Larson, M.D., Halgren, R.G., Wilkerson, C., Garavito, R.M., Benning, C. & Weber, A.P. (2005). “Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae.”. Plant Physiology 137: 460-474. doi:10.1104/pp.104.051169. 
  27. ^ Schönknecht, G., Chen, W.H., Ternes, C.M., Barbier, G.G., Shrestha, R.P., Stanke, M., Bräutigam, A., Baker, B.J., Banfield, J.F., Garavito, R.M., Carr, K., Wilkerson, C., Rensing, S.A., Gagneul, D., Dickenson, N.E., Oesterhelt, C., Lercher, M.J., & Weber, A.P. (2013). “Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote”. Science 339: 1207–1210. doi:10.1126/science.1231707. 
  28. ^ a b c d e f g Liu, S. L., Chiang, Y. R., Yoon, H. S. & Fu, H. Y. (2020). “Comparative genome analysis reveals Cyanidiococcus gen. nov., a new extremophilic red algal genus sister to Cyanidioschyzon (Cyanidioschyzonaceae, Rhodophyta)”. Journal of Phycology 56 (6): 1428-1442. doi:10.1111/jpy.13056. 
  29. ^ 田中 寛 (2010). “シゾン研究の意義: 今, なぜシゾンか”. 生物工学会誌 88: 481-484. 
  30. ^ 加藤 翔一 & 松永 幸大 (2012). “ミニマム真核生物シゾンの魅力と応用展開”. 生物工学会誌 90: 524-525. 
  31. ^ 田中 寛 & 今村 壮輔 (2012). “単細胞紅藻 Cyanidioschyzon merolae における窒素同化系とその制御”. 光合成研究 22: 167-173. 
  32. ^ 華岡 光正 (2017). “単細胞紅藻シゾンにおける光応答戦略 −葉緑体自律的な転写制御−”. 植物科学最前線 4: 13-20. 
  33. ^ 黒岩 常祥 (2017). “シゾンとメダカモから探る真核生物の増殖の基本原理”. Plant Morphology 29: 63-71. doi:10.5685/plmorphol.29.63. 
  34. ^ a b Reeb, V. & Bhattacharya, D. (2010). “The thermo-acidophilic Cyanidiophyceae (Cyanidiales)”. In Seckbach, J. & Chapman, D.J.. Red Algae in the Genomic Age. Springer Netherlands. pp. 409-426. ISBN 978-90-481-3794-7 
  35. ^ Toplin, J.A., Norris, T.B., Lehr, C.R., McDermott, T.R. & Castenholz, R.W. (2008). “Biogeographic and phylogenetic diversity of thermoacidophilic cyanidiales in Yellowstone National Park, Japan, and New Zealand”. Appl. Environ. Microbiol. 74: 2822–2833. doi:10.1128/AEM.02741-07. 
  36. ^ Gross, W., Küver, J., Tishchendorf, G., Bouchaala, N. and Büsch, W. (1998). “Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas”. Eur. J. Phycol. 33: 25–31. doi:10.1080/09670269810001736503. 
  37. ^ Yoon, H.S., Ciniglia, C., Wu, M., Comeron, J.M., Pinto, G., Pollio, A. & Bhattacharya, D. (2006). “Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta)”. BMC Evol. Biol. 6: 78. doi:10.1186/1471-2148-6-78. 
  38. ^ Hoffmann, L. (1994). “Cyanidium-like algae from caves”. Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells. Springer, Dordrecht. pp. 175-182. ISBN 0792326350 
  39. ^ Iovinella, M., Eren, A., Pinto, G., Pollio, A., Davis, S. J., Cennamo, P. & Ciniglia, C. (2018). “Cryptic dispersal of Cyanidiophytina (Rhodophyta) in non-acidic environments from Turkey”. Extremophiles 22: 713-723. doi:10.1007/s00792-018-1031-x. 
  40. ^ Geitler, L. & Ruttner, F. (1936). “Die Cyanophyceen der deutschen limnologischen Sunda-Expedition, ihre Morphologie, Systematik und Ökologie”. Archiv für Hydrobiologie, Tropische Binnengewässer 14: 308-369, 371-483. 
  41. ^ Hirose, H. (1950). “Studies on a thermal alga, Cyanidium caldarium”. Bot. Mag. 63: 107-111. 
  42. ^ Allen, M. B. (1952). “The cultivation of Myxophyceae”. Archives of Microbiology 17: 34-53. 
  43. ^ Bourrelly, P. (1970). Les Algues d'Eau Douce. Ill. Les Algues Bleues, et Rouges. N. Boub6e & Cie, Paris. pp. 256 
  44. ^ Brock, T. D. (1978) Thermophilic Microorganisms and Life at High Temperatures. Springer, New York, Heidelberg, Berlin, 465 pp.
  45. ^ Fredrick, J. F. (1976). “Cyanidium caldarium as a bridge alga between Cyanophyceae and Rhodophyceae: Evidence from immunodiffusion studies”. Plant and Cell Physiology 17: 317-322. doi:10.1093/oxfordjournals.pcp.a075284. 
  46. ^ Silva, P. C. (1962). “Taxonomy”. In Lewin, R. A.. Physiology and Biochemistry of Algae. Academic Press, New York. pp. 827-837 
  47. ^ Kremer, B. P. (1982). “Cyanidium caldarium: a discussion of biochemical features and taxonomic problems”. British Phycological Journal 17: 51-61. doi:10.1080/00071618200650071. 
  48. ^ Seckbach, J. (1995). “The first eukaryotic cells — acid hot-spring algae”. Journal of Biological Physics 20: 335-345. doi:10.1007/BF00700452. 
  49. ^ Nagashima, H. (1981). “Morphological properties of Cyanidium caldarium and related algae in Japan”. Jap. J. Phycol. 29: 237-242. 
  50. ^ a b Saunders, G.W. & Hommersand, M.H. (2004). “Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data”. Am. J. Bot. 91: 1494-1507. doi:10.3732/ajb.91.10.1494. 
  51. ^ a b Yoon, H.S., Muller, K.M., Sheath, R.G., Ott, F.D. & Bhattacharya, D. (2006). “Defining the major lineages of red algae (Rhodophyta)”. J. Phycol. 42: 482-492. doi:10.1111/j.1529-8817.2006.00210.x. 
  52. ^ a b c Merola, A., Castaldo, R., Luca, P.D., Gambardella, R., Musacchio, A. & al. (1981). “Revision of Cyanidium caldarium. Three species of acidophilic algae.”. Giornale Botanico Italiano 115: 189-195. doi:10.1080/11263508109428026. 
  53. ^ a b c Guiry, M.D. & Guiry, G.M. (2019) AlgaeBase. World-wide electronic publication, Nat. Univ. Ireland, Galway. http://www.algaebase.org; searched on 16 Septmber 2019.
  54. ^ Kamiya, M., Lindstrom, S. C., Nakayama, T., Yokoyama, A., Lin, S. M., Guiry, M. D., ... & Cho, T. O. (2017). Syllabus of plant families ‐ A. Engler's Syllabus der Pflanzenfamilien Part 2/2: Photoautotrophic eukaryotic algae ‐ Rhodophyta. Borntraeger Science Publishers, Berlin. pp. 171. ISBN 978-3-443-01094-2 
  55. ^ a b Ciniglia, C., Yoon, H. S., Pollio, A., Pinto, G. & Bhattacharya, D. (2004). “Hidden biodiversity of the extremophilic Cyanidiales red algae”. Molecular Ecology 13: 1827-1838. doi:10.1111/j.1365-294X.2004.02180.x. 
  56. ^ a b Hsieh, C.J., Zhan, S.H., Lin, Y., Tang, S.L. & Liu, S.L. (2015). “Analysis of rbcL sequences reveals the global biodiversity, community structure, and biogeographical pattern of thermoacidophilic red algae (Cyanidiales)”. J. Phycol. 51: 682-694. doi:10.1111/jpy.12310. 
  57. ^ a b c Ciniglia, C., Cennamo, P., De Natale, A., De Stefano, M., Sirakov, M., Iovinella, M., ... & Pollio, A. (2019). “Cyanidium chilense (Cyanidiophyceae, Rhodophyta) from tuff rocks of the archeological site of Cuma, Italy”. Phycological Research. doi:10.1111/pre.12383. 
  58. ^ Skorupa, D.J., Reeb, V., Castenholz, R.W., Bhattacharya, D., & McDermott, T.R. (2013). “Cyanidiales diversity in Yellowstone National Park”. Lett. Applied Microbiology 57: 459–466. doi:10.1111/lam.12135. 
  59. ^ a b Wynne, M. J. & Schneider, C. W. (2010). “Addendum to the synoptic review of red algal genera”. Botanica Marina 53: 291-299. doi:10.1515/BOT.2010.039. 


「イデユコゴメ綱」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「イデユコゴメ綱」の関連用語

イデユコゴメ綱のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



イデユコゴメ綱のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのイデユコゴメ綱 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS