素イデアルと素スペクトル
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/08/28 18:55 UTC 版)
詳細は「素イデアル」および「環のスペクトル」を参照 特に重要な種類のイデアルとして、素イデアルがある(しばしば p あるいは p {\displaystyle \scriptstyle {\mathfrak {p}}} などで表す)。この概念が生じたのは、19世紀の代数学者が('Z と異なり)素因数分解の一意性の成り立たない環をたくさん発見したことによる(素因数分解が一意な環は一意分解環と呼ばれる)。定義により、素イデアルは真のイデアルであって、環の二元 a, b の積 ab が p に属するならば必ず a か b のうちの少なくとも一方が p に属するという性質を持つものである(逆はイデアルの定義から任意のイデアルにおいて成り立つ)。このことは、剰余環 R/p が整域となることといっても同じである。また、p の補集合 R ∖ p が積閉集合になることと言い換えることもできる。このとき、局所化 (R ∖ p)−1R は独自の記法 Rp を持つ程に重要なもので、この環はただ一つの極大イデアル pRp を持つ。このように極大イデアルが唯一であるような環は局所環と呼ばれる。 体は整域ゆえ、すでに述べたように極大イデアルは素イデアルである。ある特定のイデアルが素であること(つまりその剰余環が零因子を持たないこと)を示すのは必ずしも容易ではなく、非常に難しい問題となる場合もある。 素イデアルは、環 R の素イデアル全体の成す集合である環のスペクトル Spec R を通じて、環を「幾何学的」に解釈するための鍵となる概念である。既に述べたように、零でない任意の環は少なくとも一つの素イデアルを持つから、スペクトルは空でない。R が体ならば唯一の素イデアルが零イデアルであるから、そのスペクトルも一点からなる。一方、有理整数環 Z のスペクトルは零イデアルに対応する一点のほかに、(素イデアル pZ を生成する)各素数 p に対応する点を持つ。スペクトルにはザリスキー位相と呼ばれる位相が入っている。これは環の各元 f に対して部分集合 D(f) = {p ∈ Spec R : f ∉ p} が開となるものとして定義される位相である。この位相は解析学や微分幾何学に見るような位相とは異なり、例えば一点集合が一般には閉にならなかったりする。また例えば、零イデアル 0 ⊂ Z に対応する点の閉包は Z のスペクトル全体に一致する。 スペクトルの概念は可換環論と代数幾何学に共通する基盤である。代数幾何学は Spec R に層 O {\displaystyle \scriptstyle {\mathcal {O}}} (実体は、局所的に、つまりさまざまな開集合上で、定義された函数の集合)を付随させることに始まる。この空間と層からなるデータをアフィンスキームと呼ぶ。アフィンスキームが与えられたとき、基礎となる環 R は層 O {\displaystyle \scriptstyle {\mathcal {O}}} の大域切断全体の成す環として回復される。さらに言えば、こうして得られる環とアフィンスキームとの間の一対一対応は環準同型と可換になる。即ち任意の環準同型 f: R → S に対して矢印の向きを逆にする連続写像 Spec S → Spec R; q ↦ f−1(q) が生じる。これはつまり、S の任意の素イデアルは f による原像として R の素イデアルに移されることを言うものである。スペクトルは局所化と剰余環の直観的な相補性を明確な形で述べるのにも役に立つ。即ち自然な写像 R → Rf および R → R/fR は(考えている環のスペクトルにザリスキー位相を入れれば)相補的な関係にあるスペクトルの開はめ込みおよび閉はめ込みに対応する。 詰まるところ、これら二つの圏の同値性は幾何学的な仕方での環の代数的性質を非常によく反映するものである。アフィンスキームは(多様体がRn の開集合上で局所的に定義されるのとまったく同じようにして)スキームの局所モデルになっている(スキームは代数幾何学の主な研究対象である)。それ故に、幾何学的直観に由来する多くの概念を環とその準同型に対して持ち込むことができる。
※この「素イデアルと素スペクトル」の解説は、「可換環」の解説の一部です。
「素イデアルと素スペクトル」を含む「可換環」の記事については、「可換環」の概要を参照ください。
- 素イデアルと素スペクトルのページへのリンク