ザリスキー位相
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/02 14:58 UTC 版)
ナビゲーションに移動 検索に移動
![]() |
原文と比べた結果、この記事には多数(少なくとも5個以上)の誤訳があることが判明しています。情報の利用には注意してください。
|

代数幾何学と可換環論において、ザリスキ位相(英語: Zariski topology)は代数多様体に定義される位相であり、最初はオスカー・ザリスキによって導入された。ザリスキ位相は可換環の素イデアル全体の集合に対しても定義され、その環のスペクトルと呼ばれる。
ザリスキ位相によって、基礎体が位相体でないときでさえ、代数多様体の研究に位相空間論の道具を使うことができるようになる。このような手法はスキーム論の基本的な考えの1つであり、多様体 (manifold) が局所座標系(実アファイン空間の開部分集合)を貼り合わせて構成されるのと同じように、一般の代数多様体はアファイン多様体を貼り合わせて構成される。
代数多様体のザリスキ位相は、多様体の代数的部分集合の全体を閉集合系とする位相である。複素数体上の代数多様体の場合には、ザリスキ位相は通常の位相よりも粗く、任意の代数的集合は通常の位相でも閉集合であるが、逆は一般には正しくない。
可換環の素イデアル全体の集合へのザリスキ位相の一般化は、代数閉体上定義されたアファイン多様体の点全体と多様体の正則関数環の極大イデアル全体との間の1:1対応を確立するヒルベルトの零点定理から従う。この定理より、可換環の極大イデアル全体の集合上のザリスキ位相は、ある与えられたイデアルを含む極大イデアルの全体を閉集合とし、かつそのような集合のみが閉集合である、と定めればよいことが示唆される。グロタンディークのスキーム論のもう1つの基本的な考えは、極大イデアルに対応する普通の点のみならず、すべての(既約)代数多様体、これは素イデアルに対応する、をも点として考えることである。したがって、可換環の素イデアル全体の集合(スペクトル)上のザリスキ位相は、ある固定されたイデアルを含むような素イデアル全体の集合の全体を閉集合系とする位相である。
多様体のザリスキ位相
古典的な代数幾何学(つまりスキーム(1960年頃グロタンディークによって導入された)を用いない代数幾何学)において、ザリスキ位相は代数多様体上に定義される[1]。ザリスキ位相は、多様体の点全体の上に定義されるのであるが、閉集合の全体が多様体の代数的集合全体であるような位相である。最も初等的な代数多様体はアファイン多様体と射影多様体であるから、この両者の場合に定義をより明示的にしておくと有用である。以下では固定された代数閉体 k 上で考える。(古典的な幾何学では k はほとんどいつも複素数体である。)
アファイン多様体
まずアファイン空間
- 体 k のスペクトル Spec k は、一つの元からなる位相空間である。
- 整数ℤのスペクトル Spec ℤ は、素数 p に対応する極大イデアル (p) ⊂ ℤを閉点として持ち、零イデアル (0) を閉でない生成点(generic point)(すなわち、閉包は全空間となる)として持つ。従って、Spec ℤ の閉集合全体は、ちょうど有限個の閉点の合併と全体空間からなる。
- 体 k 上の一変数多項式環のスペクトル Spec k[t] は、 で表され、アフィン直線(affine line)である。体上の一変数多項式環は主イデアル整域であることが知られていて、既約多項式は k[t] の素元である。k が例えば複素数体のような代数的閉体であれば、定数でない多項式が既約であることと、線型で k のある元 a により t − a の形であることとは同値である。従って、スペクトルは k の全ての元 a に対応する閉点と零イデアルに対応する生成点から構成される。k が例えば実数体のような代数的閉体でなければ、非線型な既約多項式の存在により、描像はさらに複雑になる。例えば、ℝ[t] のスペクトルは、ℝ の中の a に対する閉点 (x − a) と p, q が ℝ の元であり、負の判別式 p2 − 4q < 0 であるような (x2 + px + q) と最後に生成点から構成される。任意の体に対し、Spec k[t] の閉集合全体は閉点の有限個の合併と全体空間である。(これは代数的閉体に対しては上記の議論より明らかである。一般的な場合の証明は、いくつかの可換代数、つまり k[t] のクルル次元は 1 であるという事実 - クルルの主イデアル定理を参照 - 必要とする。
参照項目
- 環のスペクトル(アフィンスキーム)
- スペクトル空間(Spectral space)
参考文献
- ^ Mumford, David (1999) [1967], The red book of varieties and schemes, Lecture Notes in Mathematics, 1358 (expanded, Includes Michigan Lectures (1974) on Curves and their Jacobians ed.), Berlin, New York: Springer-Verlag, doi:10.1007/b62130, ISBN 978-3-540-63293-1, MR 1748380
- ^ Dummit, D. S.; Foote, R. (2004). Abstract Algebra (3 ed.). Wiley. pp. 71–72. ISBN 9780471433347
関連書籍
- Hartshorne, Robin (1977), Algebraic Geometry, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90244-9, OCLC 13348052, MR 0463157
- Todd Rowland. "Zariski Topology". MathWorld (英語).
ザリスキー位相
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/04 05:30 UTC 版)
P = { 2 , 3 , 5 , 7 , … } {\displaystyle P=\{2,3,5,7,\ldots \}} を素数の集合とする。各整数 n ∈ Z {\displaystyle n\in \mathbb {Z} } に対し、 V ( n ) = { p ∈ P ∣ n {\displaystyle V(n)=\{p\in P\mid n} はpの倍数 } {\displaystyle \}} と定義し、V(n)全体の集合を閉集合系とするP上の位相をP上のザリスキー位相という。ザリスキー位相はP上のいかなる距離から定まる位相とも一致しないことが知られており、距離から定まらない位相でなおかつ数学の重要な研究対象となっているものの代表例である。ザリスキー位相の概念は一般の可換環Rの素イデアル全体の集合に対しても定義する事ができる事が知られている。 一方、これとは全く異なる角度からザリスキー位相を定義する事ができる。Kを複素数体(もしくはより一般に代数的閉体)とし、Knを考える。そしてK上の多項式の任意の集合Sに対し、 V ( S ) = { x ∈ K n ∣ ∀ f ∈ S : f ( x ) = 0 } {\displaystyle V(S)=\{x\in K^{n}\mid \forall f\in S~:~f(x)=0\}} と定義し、V(S)全体の集合を閉集合系とする位相をKn上のザリスキー位相という。 以上で述べた2種類のザリスキー位相は一見全く異なるように見えるが、実は同種の概念を別の角度から見たものである事が知られている。これら2つが同種である事は代数幾何学の最も基本的な定理の一つとなっている。
※この「ザリスキー位相」の解説は、「位相空間」の解説の一部です。
「ザリスキー位相」を含む「位相空間」の記事については、「位相空間」の概要を参照ください。
- ザリスキー位相のページへのリンク