環のスペクトル
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/10/06 20:26 UTC 版)
抽象代数学と代数幾何学において,可換環 R のスペクトル Spec(R) とは,R のすべての素イデアルからなる集合である.通常ザリスキー位相と構造層をともに考え,それにより Spec(R) は局所環付き空間である.この形の局所環付き空間はアフィンスキームと呼ばれる.
ザリスキー位相
可換環 R の任意のイデアル I に対し,VI を I を含む素イデアルの全体と定義する.この形の集合を閉集合と定義することで Spec(R) に位相を入れることができる.この位相をザリスキー位相と呼ぶ.
ザリスキー位相の基底を次のように構成できる.f ∈ R に対し,Df を f を含まない R の素イデアル全体と定義する.すると各 Df は Spec(R) の開集合であり,この形の開集合の全体はザリスキー位相の基底である.
Spec(R) は準コンパクトであるが,ほとんど決してハウスドルフではない.実際,R の極大イデアルがちょうどこの位相での閉点である.同じ理由により,Spec(R) は一般には T1 空間ではない[注釈 1].しかしながら,Spec(R) は必ず T0 空間である.また,スペクトル空間でもある.
層とスキーム
ザリスキー位相を持った空間 X = Spec(R) が与えられると,その構造層 OX が開集合 Df 上 Γ(Df, OX) を R の f における局所化 Rf とすることで定義される.これは B 層を定義し,したがって層を定義することを示すことができる.より詳しくは,開集合 Df たちはザリスキー位相の基底であるので,任意の開集合 U に対し,これを {Dfi}i∈I の和集合として表し,Γ(U, OX) = limi∈I Rfi とおく.この前層は層であることを確認でき,したがって Spec(R) は環付き空間である.この形の環付き空間に同型なものはアフィンスキームと呼ばれる[要検証 ].一般のスキームはアフィンスキームを貼り合わせて得られる.
同様に,環 R 上の加群 M に対して,Spec(R) 上の層
この項目は、代数幾何学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています。
環のスペクトル
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/24 04:50 UTC 版)
可換環 A に対して、 A の素イデアルの全体の集合 Spec(A) は A のスペクトルとよばれる。A の部分集合 M に対し V ( M ) = { p ∈ Spec ( A ) : M ⊂ p } {\displaystyle V(M)=\{{\mathfrak {p}}\in \operatorname {Spec} (A):M\subset {\mathfrak {p}}\}} とおくと、{V(M) : M ⊂ A } は Spec(A) 上の閉集合系の公理を満たす。これによって定まる位相はザリスキー位相とよばれる。A の元 f に対して D ( f ) = { p ∈ Spec ( A ) : f ∉ p } {\displaystyle D(f)=\{{\mathfrak {p}}\in \operatorname {Spec} (A):f\notin {\mathfrak {p}}\}} とおくと、{D(f) : f ∈ A} は Spec(A) の開集合の生成基となる。fの形式的逆を付け加えて局所化した環 A[1/f] のスペクトルは D(f) と同相になる。
※この「環のスペクトル」の解説は、「概型」の解説の一部です。
「環のスペクトル」を含む「概型」の記事については、「概型」の概要を参照ください。
- 環のスペクトルのページへのリンク