環の単元群
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/10/02 17:23 UTC 版)
環は乗法について半群を成し、環が単位的ならばそれは単位的半群であるから、この構造に関する可逆元、単元(単数)を考えることができる。とくに、単位的環 R の単元の全体は、R の単元群 (group of units) と呼ばれる R の乗法的半群の極大部分群を成す。R の単元群は U(R), R× などで表す。R が可除環となることと、R の単元群が R の非零元全体 R* に一致することとは同値である。 任意の単位的環 R, S に対し、単位的環準同型 f: R → S は、単元群の間の群準同型 U(f): U(R) → U(S) を引き起こす。したがって、単位的環 R にその単元群 U(R) を対応させる操作 Uは、単位的環の圏から群の圏への函手である。この函手の左随伴は群 G に群環 ZG を対応させる操作である。
※この「環の単元群」の解説は、「可逆元」の解説の一部です。
「環の単元群」を含む「可逆元」の記事については、「可逆元」の概要を参照ください。
- 環の単元群のページへのリンク