層_(数学)とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 学問 > 専攻 > 数学 > 層_(数学)の意味・解説 

層 (数学)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/10/17 04:28 UTC 版)

数学における(そう、: sheaf[注 1], : faisceau)とは、位相空間上で連続的に変化する様々な数学的構造をとらえるための概念であり、大域的なデータを局所的に取り出すこと、および局所的なデータの貼り合わせ可能性によって定式化される。

 層は局所と大域をつなぐことばであり、装置である。層のことばを使って多様体やリーマン面などの幾何学的対象が定義できる。曲面の向きや微分形式も層のことばで定義できる。 例として、位相空間上の連続関数を考える。位相空間の各開集合に対しそこで定義された連続関数の環が定まり、開集合の包含関係に対し定義域を制限することで定まる写像は環の射である。 さらに、局所的に定義された連続関数の族が大域的な関数を定義するならば、その関数は連続関数である。層の定義は、この2つの性質を抽象化したものである[1]

 より形式的に、大域から局所への移行のみを考える概念は前層(ぜんそう、presheaf)とよばれる[2]

定義

前層

層を特別な種類の関手としても表現できることを思い出そう。このとき、層の射は対応する関手の自然変換である。射のこの概念により、任意の C に対し X 上の C に値を持つ層の圏が存在する。その対象は C に値を持つ層であり、射は層の射である。層の同型射はこの圏における同型射である。

層の同型射は各開集合 U 上の同型射であることを証明できる。言い換えると、φ が同型射であることと、各 U に対し φ(U) が同型射であることが同値である。同じことは単射についても正しいが、全射については正しくない。層係数コホモロジーを参照。

層の射の定義において貼りあわせの公理を用いなかったことに注意しよう。したがって、上の定義は前層に対しても意味をなす。すると C に値を持つ前層の圏は関手圏O(X) から C への反変関手の圏である。

層の茎


「層 (数学)」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。



層_(数学)と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「層_(数学)」の関連用語


2
36% |||||





7
岡潔 デジタル大辞泉
32% |||||



10
デジタル大辞泉
18% |||||

層_(数学)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



層_(数学)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの層 (数学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS