層係数コホモロジー
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/21 08:04 UTC 版)
![]() |
原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。
|
数学において、層コホモロジー(そうコホモロジー、sheaf cohomology)は、アーベル群の層に関連する層の理論の一面であり、ホモロジー代数を用いて、層 F の大域切断の具体的な計算を可能とする。数値的な領域での幾何学的な問題の記述として、層コホモロジーの理論は、重要な幾何学的な不変量の次元を計算することへ有用なツールとして使うことができる。
1950年以後の数年間で急速に発展した層コホモロジーは、リーマン・ロッホの定理のより古典的な方法や代数幾何学の因子の一次系(linear system of divisors)の解析や多変数複素函数論やホッジ理論へ結びついた。層コホモロジー群のランク、もしくは次元は、幾何学的なデータの新しい情報源になったり以前の研究の新しい解釈を与えたりする。
ひとつの動機
位相空間 X 上の層
層係数コホモロジー
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/12/23 04:43 UTC 版)
「マイヤー・ヴィートリス完全系列」の記事における「層係数コホモロジー」の解説
層係数コホモロジーの観点からは、マイヤー・ヴィートリス完全系列はチェックコホモロジーと関係する。特に、チェックコホモロジーを計算するために用いた開被覆が二つの開集合からなる場合において、スペクトル系列の退化から生じるもの(マイヤー・ヴィートリススペクトル系列とも呼ばれる)は、チェックコホモロジーを層係数コホモロジーに結び付ける。このスペクトル列は任意のトポスにおいて存在する。
※この「層係数コホモロジー」の解説は、「マイヤー・ヴィートリス完全系列」の解説の一部です。
「層係数コホモロジー」を含む「マイヤー・ヴィートリス完全系列」の記事については、「マイヤー・ヴィートリス完全系列」の概要を参照ください。
- 層係数コホモロジーのページへのリンク