層係数コホモロジーとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > ウィキペディア小見出し辞書 > 層係数コホモロジーの意味・解説 

層係数コホモロジー

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/21 08:04 UTC 版)

数学において、層コホモロジー(そうコホモロジー、sheaf cohomology)は、アーベル群の層に関連する層の理論の一面であり、ホモロジー代数を用いて、層 F大域切断の具体的な計算を可能とする。数値的な領域での幾何学的な問題の記述として、層コホモロジーの理論は、重要な幾何学的な不変量の次元を計算することへ有用なツールとして使うことができる。

1950年以後の数年間で急速に発展した層コホモロジーは、リーマン・ロッホの定理のより古典的な方法や代数幾何学の因子の一次系英語版(linear system of divisors)の解析や多変数複素函数論ホッジ理論へ結びついた。層コホモロジー群のランク、もしくは次元は、幾何学的なデータの新しい情報源になったり以前の研究の新しい解釈を与えたりする。

ひとつの動機

位相空間 X 上の層


層係数コホモロジー

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/12/23 04:43 UTC 版)

マイヤー・ヴィートリス完全系列」の記事における「層係数コホモロジー」の解説

層係数コホモロジーの観点からは、マイヤー・ヴィートリス完全系列チェックコホモロジー関係する。特に、チェックコホモロジー計算するために用いた開被覆二つ開集合からなる場合において、スペクトル系列退化から生じるもの(マイヤー・ヴィートリススペクトル系列とも呼ばれる)は、チェックコホモロジーを層係数コホモロジーに結び付ける。このスペクトル列は任意のトポスにおいて存在する

※この「層係数コホモロジー」の解説は、「マイヤー・ヴィートリス完全系列」の解説の一部です。
「層係数コホモロジー」を含む「マイヤー・ヴィートリス完全系列」の記事については、「マイヤー・ヴィートリス完全系列」の概要を参照ください。

ウィキペディア小見出し辞書の「層係数コホモロジー」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「層係数コホモロジー」の関連用語

層係数コホモロジーのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



層係数コホモロジーのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの層係数コホモロジー (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのマイヤー・ヴィートリス完全系列 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS