スペクトル系列とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > ウィキペディア小見出し辞書 > スペクトル系列の意味・解説 

スペクトル系列

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/10/03 13:33 UTC 版)

スペクトル系列(スペクトルけいれつ、: Spectral sequence)とは、ホモロジー代数学代数的位相幾何学で用いられる、ホモロジー群を逐次近似により計算する方法のことである。スペクトル系列は完全系列の一般化であり、ジャン・ルレイによって初めて用いられたとき[1]から、特に代数的位相幾何学代数幾何学ホモロジー代数学といった分野において重要な計算ツールとなっている。

発見と歴史

ジャン・ルレイは代数的位相幾何学の研究の過程での概念を導入し、そして層係数コホモロジーを計算する問題に向き合うことになった。層係数コホモロジーを計算するために、ルレイは現在ルレイ・スペクトル系列英語版と呼ばれている計算手法を編み出した。これは、層のコホモロジー群と、その層の順像(押し出しとも呼ばれる)のコホモロジー群とを、無限回の計算過程を通じて関係付けるものである。ルレイは、順像のコホモロジー群は自然に鎖複体となることに気づき、したがってコホモロジーのコホモロジーを取れることに気付いた。これは元の層のコホモロジーにはなっていないが、ある意味ではそれに一歩近づいたものになっている。そして、コホモロジーのコホモロジーがまた鎖複体になるので、これのコホモロジーをまた取ることができ、この計算をずっと繰り返すことができる。この計算ステップを無限回繰り返した後の極限が、元の層のコホモロジー群と本質的に同じものとなっている。

ルレイの計算手法が幅広い状況に適用できることはすぐに明らかとなった。ファイブレーション英語版のような幾何学的な状況や、導来関手が関係する代数学的な状況で、複数の(コ)ホモロジー群を婉曲的にではあるが関係付けてくれるスペクトル系列が数多く発見された。導来圏の導入によりその理論的な重要性は減ったが、今でもスペクトル系列はもっとも有効な計算ツールであり続けている。たとえスペクトル系列に計算不可能な項が多く含まれている状況であったとしても、スペクトル系列は有効に使うことのできる計算ツールである。

その反面、スペクトル系列は膨大な情報を持っているがゆえに会得や使用に困難が伴う。スペクトル系列が持っている情報は、3次元の格子状にアーベル群もしくは環上の加群を配置したものとなっていることが多い。最も取り扱いが簡単なスペクトル系列は、最終的には潰れる(collapse)、つまり列を進めてみてもそれ以上なんの情報も得られなくなるものである。このような場合でなくとも、種々のトリックを用いてスペクトル系列から有用な情報を引き出せることが多い。

形式的定義

Template:Confusing

定義

上の加群のようなアーベル圏を一つ固定する。コホモロジー的スペクトル系列とは、一つの非負整数

コホモロジー的なスペクトル系列の E2 シート

2重次数つきのスペクトル系列は膨大な量の把握すべきデータを持つが、これを視覚的に捉えるために広く使われている表示方法がある。rpq を2重次数つきスペクトル系列の3つの添字とする。r ごとに、方眼紙が1枚あると想像しよう。このシートの上で、p は水平方向、q は垂直方向の位置を表しているとしよう。そして、各マス目に対象

スペクトル系列を作るための最も強力な方法は、ウィリアム・マッセイ英語版による完全対を使う方法である。完全対は特に代数的位相幾何学の分野でよく使われ、他の作り方が知られていないスペクトル系列が多く存在する。実際、全ての知られているスペクトル系列は完全対から作ることができる[要出典]。にもかかわらず、(完全対は)抽象代数学ではあまり人気がなく、その分野ではほとんどのスペクトル系列はフィルターつき複体から得られている。完全対を定義するために、アーベル圏を1つとる。先程と同じく、応用上は大抵の場合環上の2重次数つき加群の圏である。完全対 とは、対象 AC の対と、この対象間の3つの準同型: f : AA, g : AC and h : CA であって、次の完全性の条件を満たすものを言う:

  • Image f = Kernel g
  • Image g = Kernel h
  • Image h = Kernel f

このデータを単に (A, C, f, g, h) と表す。完全対は三角形の絵で表現することが多い。A を補助的なデータとして使い、E0 項が C であるようなスペクトル系列を作ろう。

スペクトル系列の次のシートに行くために、導来対(derived couple)をまず作る。次の記号を準備する:

  • d = g o h
  • A' = f(A)
  • C' = Ker d / Im d
  • f' = f|A'fA' への制限
  • h' : C'A'h から誘導されるもの。h がこのような写像を誘導することは簡単に分かる。
  • g' : A'C' は次のように定義する。A' の元 a に対して、A の元 b が存在して af(b) と書ける。g'(a) を、C' における g(b) の像として定義する。一般の状況では、g' はアーベル圏に対する埋込み定理の一つを使って作られる。

定義からすぐに (A', C', f', g', h') が完全対となることが分かる。C' をスペクトル系列の E1 項とする。この操作を繰り返して完全対の列 (A(n), C(n), f(n), g(n), h(n)) が得られ、C(n)En 項とし、dng(n) o h(n) と置くことで、求めるスペクトル系列になる。

この方法で作られるスペクトル系列

  • ファイブレーションの(コ)ホモロジーの計算に使われるセール・スペクトル系列英語版[10]
  • K理論などの超常コホモロジー論で(コ)ホモロジーの計算に使われるアティヤ・ヒルツェブルフ・スペクトル系列英語版
  • ボックシュテイン・スペクトル系列英語版
  • フィルターつき複体のスペクトル系列

フィルターつき複体のスペクトル系列

スペクトル系列の極めて典型的な例はフィルターつきの英語版双対鎖複体から得られる。これは、双対鎖複体 C であって、全ての整数 p に対して部分複体 FpC が定義されており、境界写像はフィルトレーションと両立している、つまり d(FpCn) ⊆ FpCn+1 が成り立つものである。(現実の例では p は上か下かどちらか片方で有界であることが多い。)フィルトレーションは減少している、つまり FpCFp+1C と仮定する。双対鎖複体の項に対応する数字は n で表すことにする。あとではさらに、フィルトレーションはハウスドルフ分離的とも言う)、つまり FpC の全ての共通部分をとるとゼロであり、フィルトレーションは覆い尽くしている(exhaustive)、つまり FpC の全ての和集合をとると鎖複体 C 全体となることを仮定する。

フィルトレーションは0への近さを測るものとして便利である。p が大きくなるにつれて、FpC はゼロに近づいていく。このフィルトレーションから、あとのシートに行けば行くほどコバウンダリとコサイクルが元の複体のコバウンダリとコサイクルに近づいていくスペクトル系列が作れる。このスペクトル系列は、フィルター次数 p補充次数(complementary degree)q = np で2重に次数づけられたものである。(補充次数は全次数 n よりも便利な添字であることが多い。例えば、あとで説明する2重複体のスペクトル系列の場合にそうである。)

このスペクトル系列を手作業で作ってみよう。C は単一の次数づけとフィルトレーションしか持たないので、まず2重次数つき対象を C から作る。第2の次数を得るために、フィルトレーションに随伴する次数つき対象を次のようにとる。

やや奇妙な書き方をしたが、こう書いた理由はあとで E1 を作るときに分かる。境界写像はフィルトレーションと両立すると仮定しているので、E0 は2重次数つき対象になっており、E0 上に自然な2重次数つき境界写像 d0 が存在する。E1 を得るために E0 のホモロジーをとる。

は、以下の写像

における像としてかけることに注意する。これを使うと

となる。 は微分するとフィルトレーションのレベルが1つ上がるような要素全体になっており、 は微分するとフィルトレーションのレベルが0だけ上がるような要素全体の像になっている。これから、 は微分するとフィルトレーションのレベルが r 上がるような要素全体、 は微分するとフィルトレーションのレベルが r-1 だけ上がるような要素全体の像となることが推測できる。言い換えると、作ろうとしているスペクトル系列の項は

と書けるはずで、さらに関係式

を満たすはずである。このようになるためには、各 Er 上の微分 dr であって、それによるホモロジーが上記の Er+1 と同型になるものを見つけなければならない。その微分

は、 で定義されている元々の微分 d を部分対象 に制限することで得られる。

この微分が先程の性質を持つこと、すなわち Er のこの微分によるホモロジーが Er+1 となることは簡単に確かめられる。これで求めるスペクトル系列が得られた。残念なことに、この微分は明示的とは言い難い。この微分を決定するか、何かそれに代わる方法を見つけることが、スペクトル系列の適用を成功させるために必要なことの1つである。

応用

  • 混合ホッジ構造の構築に使うことができる[11]

フィルターつき複体から作られるスペクトル系列

  • ホッジ・ド・ラーム・スペクトル系列英語版
  • 2重複体のスペクトル系列

2重複体のスペクトル系列

もう一つの典型的なスペクトル系列は2重複体のスペクトル系列である。2重複体(double complex)とは、全ての整数 ij を添え字に持つ対象 Ci,j の集まりと、2つの微分 d Id II の組を合わせたものである。d Ii を減少させ、d IIj を減少させるものとする。さらに、 微分は反可換(anticommute)、つまり d I d II + d II d I = 0 とする。目標は、2つのホモロジーのホモロジー、 を比較することである。このために、2重複体に2つの異なる方法でフィルトレーションをいれる。次がそのフィルトレーションである:

これを前節の例にあてはめスペクトル系列を作ってみよう。まず、全複体(total complex)T(C•,•) を、n 次の項が であり、微分は d I + d II で定義された複体とする。d Id II は反可換な微分であることから、これは複体になっている。Ci,j の2つのフィルトレーションから、この全複体の2つのフィルトレーション

が得られる。このフィルトレーションのスペクトル系列からホモロジーのホモロジーについての情報が得られることを示すために、T(C•,•) のフィルトレーション I についてのスペクトル系列の E0E1E2 項を調べる。E0 項は簡単で、

となっている。ここで、n = p + q である。

E1 項を明らかにするためには、E0 での d I + d II を決定する必要がある。微分の次数は n に関して −1 であるから、次の写像

がある。 これから、E0 の微分は d I + d II から誘導される写像 Cp,qCp,q−1 であることがわかる。しかし、この写像と d I の次数は異なっているので、d IE0 上でゼロでなければならない。これは、微分が d II と一致していることを意味しているので、

となる。E2 を明らかにするためには、

を決定する必要がある。E1 はちょうど d II についてのホモロジーだったので、d IIE1 上でゼロになっている。したがって、

である。もう一方のフィルトレーションを使うと、同様の E2 項を持つ異なるスペクトル系列

が得られる。あとはこの2つのスペクトル系列の関係がわかればよい。r が大きくなると、この2つのスペクトル系列は有用な比較ができるほど十分に似てくることがわかる。

収束・退化・収束先

一番はじめに議論した最も簡単な例(鎖複体のスペクトル系列)では、1以上の r に対してスペクトル系列は停止した。このような状況ではシートの列の極限というものを合理的に考えることができる。0番目のシートの後には何も起こらないので、極限のシート E とは E1 と思えば良い。

一般的な状況でも、シートの極限が存在することが多く、そして常に興味深いものになっている。この点が、スペクトル系列が強力な計算手法である理由の1つである。スペクトル系列 収束する、あるいは近づいていく(abuts to)[訳語疑問点]とは、ある r(p, q) が存在して、全ての rr(p, q) に対し微分 が零写像になっていることを言う。このとき、大きな r に対して必然的に と同型である。このような状況を

という記号で表す。この p はフィルトレーションの添字を表現している。この表記法を使うとき、矢印の左側には、ほとんどのスペクトル系列で最も意味のある項 を書くことが多く、また右側は 収束先(abutment)[訳語疑問点]と呼ばれる。

ほとんどのスペクトル系列において、 項は自然には2重次数つきの対象にはなっていない。その代わり、 項には自然なフィルトレーション があることが多い。この状況では、 とセットする。この場合でも収束を先ほどと同様に定義するが、この場合には

と表記し、これで p + q = n の場合には に収束していることを意味するものとする。

収束を決定できる最も簡単な状況は、スペクトル系列が退化するときである。スペクトル系列がシート r で退化するとは、任意の sr に対して微分 ds が零写像であることを言う。これは ErEr+1Er+2 ≅ ... であることを意味する。特に、ErE と同型になる。これは、最初にあげたフィルター無しの鎖複体の自明な例(鎖複体のスペクトル系列)で起きてたことである。あのスペクトル系列は1番目のシートで退化した。一般に、2重次数つきのスペクトル系列は、水平もしくは垂直な帯状領城の外でゼロならば退化する。先の方のシートでは、微分はその帯状領域の外の対象に対しての射か、もしくは外の対象からの射になるからである。

また、ある p0 未満の全ての p と、ある q0 未満の全ての q に対して が消えているなら、スペクトル系列は収束する。p0q0 を0で取ることができるとき、第1象限スペクトル系列(first-quadrant spectral sequence)と呼ばれる。対象の、ゼロでない領域の境界からの距離は一定であることから、このようなスペクトル系列が収束することが分かる。結果的に、pq を固定すると、後の方のシートでは微分は常に からゼロ対象への写像であるか、もしくはゼロ対象から来る写像になる。より視覚的に、微分は項がゼロではない象限を去っていく、と言ってもいい。ただし、微分が全て同時にゼロにならないこともあるので、このスペクトル系列は必ずしも退化しない。同様に、ある p0 より大きい全ての p と、ある q0 より大きい全ての q に対して が消えているなら、そのスペクトル系列は収束する。

スペクトル系列の5項完全系列英語版は、ある低次数の項と E の項を関係付ける。

次の文献も参照のこと: ボードマン、Conditionally Convergent Spectral Sequences

退化の例

フィルターつき複体のスペクトル系列(続き)

包含関係の鎖(chain)

を考える。下記のように置くと、何が起きるか考える。

がこのスペクトル系列の収束先(abutment)の自然な候補である。収束は自動的には従わないが、それでも多くの場合に収束する。特に、フィルトレーションが有限で、ちょうど r 個の非自明なステップからなる場合には、スペクトル系列は r 番目のシートの後で退化する。また、複体とフィルトレーションがともに下、もしくは上に有界ならば、収束する。

考えているスペクトル系列の収束先(abutment)をより詳細に記述するために、次の表示

を考える。この表示から について何が言えるか考えるために、フィルトレーションは分離的と仮定していたことを思い出そう。この仮定から、r が大きくなると、(最初の式に出てくる)核は縮小していき となる。 に対しては、フィルトレーションは覆い尽くしている(exhaustive)と仮定していたことを思い出そう。この仮定から、r が大きくなると、(2番目の式に出てくる)像は大きくなっていき に到達する。以上をまとめて

が分かり、これからスペクトル系列の収束先(abutment)は C(p+q) 番目のホモロジーの次数が p の部分になっていることが分かる。このスペクトル系列が収束するなら、

となることがわかった。

長完全系列

フィルターつき複体のスペクトル系列を使って、長完全系列の存在を導くことができる。双対鎖複体の短完全系列 0 → ABC → 0 を一つとり、最初の写像を f : AB とする。この系列のホモロジーを取って、自然な写像 Hn(A) → Hn(B) → Hn(C) が得られ、これは真ん中の部分で完全であることは知っている。フィルターつき複体のスペクトル系列を使ってこれの連結準同型を見つけ、そうやってできる列が完全であることを証明しよう。まず、B のフィルターを

で定義する。定義から、

となる。微分は2重次数 (1, 0) を持つので、d0,q : Hq(C) → Hq+1(A) である。この写像は蛇の補題による連結準同型で、写像 ABC とあわせて列

を得る。あとはこの列が AC のところで完全であることを示せばよい。さきのスペクトル系列は、微分の2重次数は (2, −1) であるから、E2 項で退化することに注意する。したがって、E2 項は E 項と一致するので、

が成り立つ。E2 項は、これに加えて E1 項のホモロジーとしての直接的な記述を持つ。この2つの記述の記述を比べて、同型

を得る。1番目の式から C のところでの完全性が従い、2番目の式から A のところでの完全性が従う。

2重複体のスペクトル系列(続き)

フィルターつき複体についての収束先(abutment)を使うと、

が分かる。一般には、Hp+q(T(C•,•)) 上の2つの次数付けは異なる。にもかかわらず、この2つのスペクトル系列から有益な情報を得ることが可能である。

Tor の可換性

R を環、M を右 R 加群、N を左 R 加群とする。テンソル積の導来関手を Tor と表していたことを思い出そう。これは最初の引数の射影分解を使って定義されていたが、実は が成り立つ。スペクトル系列を使わずにこのことを確かめることもできるが、スペクトル系列を使うと非常に簡単に確かめられる。

MN の射影分解を一つとり、それぞれ と表す。これらを負の次数で消えている複体と捉え、微分はそれぞれ de とする。2重複体を、項は 、微分は と定義して作る。(−1 の項は微分を反可換にするため。)射影加群は平坦なので、射影加群をテンソルする操作とホモロジーを取る操作は交換可能である。したがって、

が成り立つ。2つの複体は分解になっているので、そのホモロジーは次数0部分を除き消える。次数0部分には

が残っている。特に、 項は、I スペクトル系列については q = 0 の直線部分を除き消え、II スペクトル系列については p = 0 の直線部分を除き消える。これから2番目シートでスペクトル系列は退化していることが分かり、したがって E 項は E2 項と同型である:

pq が等しければ両式の右辺は等しいので、これで Tor の可換性が示せた。

その他の例

有名なスペクトル系列を以下に列挙する。

位相幾何学と幾何学

ホモトピー論

  • 安定ホモトピー理論アダムズ・スペクトル系列英語版
  • 超常(extraordinary)コホモロジー論の一般化のアダムズ・ノヴィコフ・スペクトル系列英語版
  • コファイブレーションの初期空間のホモトピーに収束するバラット(Barratt)・スペクトル系列英語版
  • 関手のホモトピー余極限に収束するバウスフィールド・カン・スペクトル系列英語版
  • アダムズ・ノヴィコフ・スペクトル系列英語版の初項を計算するクロマティック・スペクトル系列英語版
  • コバー(cobar)・スペクトル系列英語版
  • 球面の安定ホモトピー群英語版に収束するEHPスペクトル系列英語版
  • 関数空間のホモトピー群に収束するフェデラー・スペクトル系列英語版
  • ホモトピー固定点スペクトル系列英語版[12]
  • 空間のホモロジーをホモトピーから計算するフレヴィッツ・スペクトル系列英語版
  • 空間の mod p 安定ホモロジーに収束するミラー・スペクトル系列英語版
  • バー・スペクトル系列英語版の別名であるミルナー・スペクトル系列英語版
  • バー・スペクトル系列英語版の別名であるムーア・スペクトル系列英語版
  • 単体的群(simplicial group)のホモトピー計算のためのキレン・スペクトル系列英語版
  • バー・スペクトル系列英語版の別名であるローゼンバーグ・スティーンロッド・スペクトル系列英語版
  • ウェッジ空間のホモトピー計算のためのファン・カンペン・スペクトル系列英語版

代数学

  • チェック・コホモロジー英語版から層係数コホモロジーへ向かうチェックから導来関手へのスペクトル系列英語版
  • 加群の Tor 群や Ext 群を計算するための係数環変更スペクトル系列英語版
  • 代数の巡回ホモロジーに収束するコンヌ・スペクトル系列英語版
  • ガーステン(Gersten)・ヴィット・スペクトル系列英語版
  • コズュール・コホモロジー英語版に対するグリーンのスペクトル系列英語版
  • 導来関手の合成に対するグロタンディーク・スペクトル系列英語版
  • 超ホモロジー計算のための超ホモロジー・スペクトル系列英語版
  • 微分環のテンソル積のホモロジーを計算するためのキュンネス(Künneth)・スペクトル系列英語版
  • 層のコホモロジーに収束するルレイ・スペクトル系列英語版
  • 局所から大域へのExtスペクトル系列英語版
  • 群の(コ)ホモロジーリンドン・ホッホシルト・セール・スペクトル系列英語版
  • 代数の Tor 群や Ext 群を計算するためのメイ・スペクトル系列英語版
  • 微分フィルターつき群のスペクトル系列(この記事で説明)
  • 2重複体のスペクトル系列(この記事で説明)
  • 完全対のスペクトル系列(この記事で説明)
  • 普遍係数スペクトル系列英語版
  • 相対リー環コホモロジーへ収束するファン・エスト(van Est)・スペクトル系列英語版

複素幾何学と代数幾何学

  • 特異点論英語版アーノルドのスペクトル系列英語版
  • 体の代数的K理論に収束するブロック・リヒテンバウム・スペクトル系列英語版
  • 多様体のドルボーコホモロジーから始まり代数的ド・ラーム・コホモロジー英語版へ収束するフローリッヒ・スペクトル系列英語版
  • 多様体の代数的ド・ラーム・コホモロジー英語版に収束するホッジ・ド・ラーム・スペクトル系列英語版
  • モチヴィックからK理論へのスペクトル系列英語版

脚注

  1. ^ Jean Leray (1946a, 1946b)
  2. ^ Weibel 1994, Exercise 5.2.1.; there are typos in the exact sequence, at least in the 1994 edition.
  3. ^ Weibel 1994, Exercise 5.2.2.
  4. ^ Weibel 1994, Application 5.3.5.
  5. ^ May, § 1.
  6. ^ Hatcher, pp. 540, 564.
  7. ^ McCleary 2001, p. [要ページ番号].
  8. ^ Hatcher, Example 1.17.
  9. ^ Hatcher, Example 1.18.
  10. ^ May.
  11. ^ Elzein, Fouad; Trang, Lê Dung (23 February 2013). "Mixed Hodge Structures". pp. 40, 4.0.2. arXiv:1302.5811 [math.AG]。
  12. ^ Bruner, Robert R.; Rognes, John (2005). “Differentials in the homological homotopy fixed point spectral sequence”. Algebr. Geom. Topol. 5 (2): 653-690. arXiv:math/0406081. doi:10.2140/agt.2005.5.653. 

参考文献

入門書

参考文献

発展資料

外部リンク


スペクトル系列

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/30 06:56 UTC 版)

ホモロジー代数学」の記事における「スペクトル系列」の解説

詳細は「スペクトル系列」を参照 環上の加群の圏のようなアーベル圏固定するスペクトル(系)列 (spectral sequence) は非負整数 r0選択3つの列の集まりである。 すべての整数 r ≥ r0 に対して対象 Er。(紙のシートのように)シート (sheet) と呼ばれるページ (page) やターム (term) と呼ばれることもある。 dr o dr = 0 を満たす自己準同型 dr : ErEr境界写像 (boundary map) や微分 (differential) と呼ばれるdr に関する Erホモロジー H(Er) による Er+1 の同型 The E2 sheet of a cohomological spectral sequence 二重次数付けられたスペクトル列は把握するには途方もない量のデータをもっている。しかし、スペクトル列の構造明確にする、一般的な視覚化テクニックがある。3つの添え字 r, p, q がある。各 r に対しグラフ用紙シート1枚もっている想像しよう。このシートの上に、p を水平な向きに、q を垂直な向きにとる。各格子点に、対象 E r p , q {\displaystyle E_{r}^{p,q}} があるのであるn = p + q がスペクトル列の別の自然な添え字であることは非常によくある。n は北西から南東対角線上を動き、各シートを渡る。ホモロジー場合には、微分は bidegree (−r, r − 1) をもっているので、n が1つ減る。コホモロジー場合には、n は1増える。r が 0 であるときには微分1つ下か上に対象を動かす。これはチェイン複体上の微分似ている。r が 1 であるときには微分1つ左か右に対象を動かす。r が 2 であるときには微分はちょうチェスナイト動きのように対象を動かす。より大きい r に対しては、微分ナイト動き一般化したような感じ作用する

※この「スペクトル系列」の解説は、「ホモロジー代数学」の解説の一部です。
「スペクトル系列」を含む「ホモロジー代数学」の記事については、「ホモロジー代数学」の概要を参照ください。

ウィキペディア小見出し辞書の「スペクトル系列」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

「スペクトル系列」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「スペクトル系列」の関連用語

スペクトル系列のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



スペクトル系列のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのスペクトル系列 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのホモロジー代数学 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS