蛇の補題とは? わかりやすく解説

蛇の補題

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/11/19 03:10 UTC 版)

ナビゲーションに移動 検索に移動

蛇の補題(へびのほだい、: snake lemma)、スネーク・レンマ数学、特にホモロジー代数において、長完全列を構成するために使われる道具である。蛇の補題はすべてのアーベル圏で有効であり、ホモロジー代数やその応用、例えば代数トポロジーにおいて、きわめて重要な道具である。補題の助けによって構成された準同型は一般に連結準同型 (connecting homomorphism) と呼ばれる。

ステートメント

任意のアーベル圏アーベル群の圏や与えられた上のベクトル空間の圏など)において、可換図式

を考える。ただし2つの列は完全で、0 は零対象である。すると a, b, c余核に関連した完全列

補題の結論である完全列を、ずるずる滑っているのような逆 S 字に、この広げられた図式に描くことができることに注意しよう。

写像の構成

核の間の写像と余核の間の写像は、図式の可換性によって、与えられた(水平の)写像から自然な方法で誘導される。2つの誘導された列の完全性はもとの図式の行の完全性から直ちに従う。補題の重要なステートメントは、完全列を完成させる連結準同型 d が存在するということである。

アーベル群やある上の加群の場合、写像 d は次のように構成できる。ker c の元 x をとり、それを C の元と見る。g全射なので、ある B の元 y が存在して、g(y) = x である。図式の可換性によって、

上の図式が可換で行が完全であるとすれば、蛇の補題を「手前」と「奥」で2回適用することができ、2つの長完全列が得られる。これらは下の形の可換図式によって関係している。

大衆文化において

関連項目

参考文献

外部リンク


蛇の補題

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/30 06:56 UTC 版)

ホモロジー代数学」の記事における「蛇の補題」の解説

詳細は「蛇の補題」を参照 任意のアーベル圏アーベル群の圏与えられ体上のベクトル空間の圏など)において、可換図式考える。ただし2つの列は完全で、0 は零対象である。すると a, b, c の余核関連した完全列 ker ⁡ a ⟶ ker ⁡ b ⟶ ker ⁡ c ⟶ d coker ⁡ a ⟶ coker ⁡ b ⟶ coker ⁡ c {\displaystyle \ker a\;{\color {Gray}\longrightarrow }\ker b\;{\color {Gray}\longrightarrow }\ker c\;{\overset {d}{\longrightarrow }}\operatorname {coker} a\;{\color {Gray}\longrightarrow }\operatorname {coker} b\;{\color {Gray}\longrightarrow }\operatorname {coker} c} が存在する。さらに、射 f がモノ射であれば、射 ker a → ker b もモノ射であり、g' がエピ射であれば、coker b → coker c もエピ射である。

※この「蛇の補題」の解説は、「ホモロジー代数学」の解説の一部です。
「蛇の補題」を含む「ホモロジー代数学」の記事については、「ホモロジー代数学」の概要を参照ください。

ウィキペディア小見出し辞書の「蛇の補題」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「蛇の補題」の関連用語

蛇の補題のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



蛇の補題のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの蛇の補題 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのホモロジー代数学 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS