周期進行波とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 周期進行波の意味・解説 

周期進行波

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/02/22 03:06 UTC 版)

数学の分野における周期進行波(しゅうきしんこうは、: periodic travelling wave)あるいは波列(はれつ、: wavetrain)とは、一定のスピードで動く1次元ユークリッド空間内のある周期関数である。したがって、空間および時間の両方に関する周期関数であるような時空的振動の特別なタイプと見なされる。


  1. ^ a b c d e f N. Kopell; L.N. Howard (1973). “Plane wave solutions to reaction-diffusion equations”. Stud. Appl. Math. 52: 291-328. 
  2. ^ a b c d I.S. Aranson; L. Kramer (4 February 2002). “The world of the complex Ginzburg-Landau equation”. Rev. Mod. Phys. (Minneapolis: APS) 74: 99-143. doi:10.1103/RevModPhys.74.99. ISSN 0034-6861. LCCN 31-21290. OCLC 5975699. 
  3. ^ S. Coombes (April 2001). “From periodic travelling waves to travelling fronts in the spike-diffuse-spike model of dendritic waves”. Math. Biosci. (Amsterdam: Elsevier) 170 (2): 155-172. doi:10.1016/S0025-5564(00)00070-5. ISSN 0025-5564. LCCN 68-130147. OCLC 1681432. 
  4. ^ J.A. Sherratt; G.J. Lord (February 2007). “Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments”. Theor. Popul. Biol. (Amsterdam: Elsevier) 71 (1): 1–11. doi:10.1016/j.tpb.2006.07.009. ISSN 0040-5809. LCCN 73-19414. OCLC 932477. 
  5. ^ S.A. Gourley; N.F. Britton (1 September 1993). “Instability of traveling wave solutions of a population model with nonlocal effects”. IMA J. Appl. Math. 51 (3): 299-310. doi:10.1093/imamat/51.3.299. 
  6. ^ P. Ashwin; M.V. Bartuccelli; T.J. Bridges; S.A. Gourley (January 2002). “Travelling fronts for the KPP equation with spatio-temporal delay”. Z. Angew. Math. Phys. (Basel: Birkhäuser Verlag) 53 (1): 103-122. doi:10.1007/s00033-002-8145-8. ISSN 0044-2275. LCCN 52-17098. OCLC 868969274. 
  7. ^ M. Kot (15 November 1992). “Discrete-time travelling waves: ecological examples”. J. Math. Biol. (Heidelberg: Springer Verlag) 30 (4): 413-436. doi:10.1007/BF00173295. ISSN 0303-6812. LCCN 74-645888. OCLC 01794831. 
  8. ^ M.D.S. Herrera; J.S. Martin (30 October 2009). “An analytical study in coupled map lattices of synchronized states and traveling waves, and of their period-doubling cascades”. Chaos, Solitons & Fractals 42 (2): 901–910. doi:10.1016/j.chaos.2009.02.040. 
  9. ^ J.A. Sherratt (1 September 1996). “Periodic travelling waves in a family of deterministic cellular automata”. Physica D (Elsevier) 95 (3–4): 319-335. doi:10.1016/0167-2789(96)00070-X. ISSN 0167-2789. OCLC 807718984. 
  10. ^ M. Courbage (15 April 1997). “On the abundance of traveling waves in 1D infinite cellular automata”. Physica D (Elsevier) 103 (1–4): 133-144. doi:10.1016/S0167-2789(96)00256-4. ISSN 0167-2789. OCLC 807718984. 
  11. ^ a b c J.A. Sherratt (15 February 1994). “Irregular wakes in reaction-diffusion waves”. Physica D (Elsevier) 70 (4): 370–382. doi:10.1016/0167-2789(94)90072-8. ISSN 0167-2789. OCLC 807718984. 
  12. ^ a b S.V. Petrovskii; H. Malchow (April 1999). “A minimal model of pattern formation in a prey-predator system”. Math. Comp. Modelling 29 (8): 49–63. doi:10.1016/S0895-7177(99)00070-9. 
  13. ^ a b E. Ranta; V. Kaitala (4 December 1997). “Travelling waves in vole population dynamics”. Nature (London: Nature Publishing Group) 390: 456. doi:10.1038/37261. ISSN 0028-0836. OCLC 01586310. 
  14. ^ X. Lambin; D.A. Elston; S.J. Petty; J.L. MacKinnon (22 August 1998). “Spatial asynchrony and periodic travelling waves in cyclic populations of field voles”. Proc. R. Soc. Lond B (London: Royal Society) 265 (1405): 1491-1496. doi:10.1098/rspb.1998.0462. ISSN 0962-8452. LCCN 92-656221. OCLC 1764614. 
  15. ^ a b c d J.D.M. Rademacher; B. Sandstede; A. Scheel (15 May 2007). “Computing absolute and essential spectra using ontinuation”. Physica D (Elsevier) 229 (2): 166–183. doi:10.1016/j.physd.2007.03.016. ISSN 0167-2789. OCLC 807718984. 
  16. ^ a b c M.J. Smith; J.D.M. Rademacher; J.A. Sherratt (26 January 2009). “Absolute stability of wavetrains can explain patiotemporal dynamics in reaction-diffusion systems of lambda-omega type”. SIAM J. Appl. Dyn. Systems (SIAM) 8 (3): 1136-1159. doi:10.1137/090747865. ISSN 1536-0040. OCLC 47264888. 
  17. ^ K. Maginu (January 1981). “Stability of periodic travelling wave solutions with large spatial periods in reaction-diffusion systems”. J. Diff. Eqns. 39 (1): 73-99. doi:10.1016/0022-0396(81)90084-X. 
  18. ^ M.J. Smith; J.A. Sherratt (15 December 2007). “The effects of unequal diffusion coefficients on periodic travelling waves in oscillatory reaction-diffusion systems”. Physica D (Elsevier) 236 (2): 90-103. doi:10.1016/j.physd.2007.07.013. ISSN 0167-2789. OCLC 807718984. 
  19. ^ B. Sandstede; A. Scheel (1 November 2000). “Absolute and convective instabilities of waves on unbounded and large bounded domains”. Physica D (Elsevier) 145 (3–4): 233-277. doi:10.1016/S0167-2789(00)00114-7. ISSN 0167-2789. OCLC 807718984. 
  20. ^ A.L. Kay; J.A. Sherratt (2000). “Spatial noise stabilizes periodic wave patterns in oscillatory systems on finite domains”. SIAM J. Appl. Math. (SIAM) 61 (3): 1013-1041. doi:10.1137/S0036139999360696. ISSN 0036-1399. OCLC 962864035. 
  21. ^ a b D.M. Johnson; O.N. Bjornstad; A.M. Liebhold (May 2006). “Landscape mosaic induces travelling waves of insect outbreaks”. Oecologia (Berlin: Springer-Verlag) 148 (1): 51-60. doi:10.1007/s00442-005-0349-0. ISSN 0029-8549. OCLC 1353676. 
  22. ^ a b K. Nozaki; N. Bekki (5 August 1983). “Pattern selection and spatiotemporal transition to chaos in the Ginzburg-Landau equation”. Phys. Rev. Lett. (Ridge, NY: APS) 51 (24): 2171-2174. doi:10.1103/PhysRevLett.51.2171. ISSN 0031-9007. LCCN 59-37543. OCLC 1715834. 
  23. ^ M. Ipsen; L. Kramer; P.G. Sorensen (October 2000). “Amplitude equations for description of chemical reaction–diffusion systems”. Phys. Rep. (Amsterdam: Elsevier) 337 (1–2): 193-235. doi:10.1016/S0370-1573(00)00062-4. ISSN 0370-1573. OCLC 252468919. 
  24. ^ A.S. Mikhailov; K. Showalter (March 2006). “Control of waves, patterns and turbulence in chemical systems”. Phys. Rep. (Amsterdam: Elsevier) 425 (2–3): 79-194. doi:10.1016/j.physrep.2005.11.003. ISSN 0370-1573. OCLC 252468919. 
  25. ^ J.A. Sherratt; M.A. Lewis; A.C. Fowler (March 28, 1995). “Ecological chaos in the wake of invasion”. Proc. Natl. Acad. Sci. USA (Washington, D.C.: NAS) 92 (7): 2524-2528. doi:10.1073/pnas.92.7.2524. ISSN 0027-8424. JSTOR 2367152. LCCN 16-10069. OCLC 43473694. 
  26. ^ a b S.V. Petrovskii; H. Malchow (March 2001). “Wave of chaos: new mechanism of pattern formation in spatio-temporal population dynamics”. Theor. Pop. Biol. (Amsterdam: Elsevier) 59 (2): 157-174. doi:10.1006/tpbi.2000.1509. ISSN 0040-5809. LCCN 73-19414. OCLC 932477. 
  27. ^ J. A. Sherratt; X. Lambin; C.J. Thomas; T.N. Sherratt (22 February 2002). “Generation of periodic waves by landscape features in cyclic predator-prey systems”. Proc. R. Soc. Lond B (London: Royal Society) 269 (1489): 327-334. doi:10.1098/rspb.2001.1890. ISSN 0962-8452. LCCN 92-656221. OCLC 1764614. 
  28. ^ M. Sieber; H. Malchow; S.V. Petrovskii (20 January 2010). “Noise-induced suppression of periodic travelling waves in oscillatory reaction–diffusion systems”. Proc. R. Soc. Lond. A (London: Royal Society) 466 (2119): 1903-1917. doi:10.1098/rspa.2009.0611. ISSN 1364-5021. LCCN 96-660116. OCLC 610206090. 
  29. ^ J.A. Sherratt (23 June 2008). “A comparison of periodic travelling wave generation by Robin and Dirichlet boundary conditions in oscillatory reaction-diffusion equations”. IMA J. Appl. Math. 73 (5): 759-781. doi:10.1093/imamat/hxn015. 
  30. ^ V.N. Biktashev; M.A. Tsyganov (24 August 2009). “Spontaneous traveling waves in oscillatory systems with cross diffusion”. Phys. Rev. E (Ridge, NY: APS) 80 (5). doi:10.1103/PhysRevE.80.056111. ISSN 1539-3755. LCCN 2001-227060. OCLC 45808357. 
  31. ^ M. R. Garvie; M. Golinski (March 2010). “Metapopulation dynamics for spatially extended predator-prey interactions”. Ecological Complexity (Amsterdam: Elsevier) 7 (1): 55-59. doi:10.1016/j.ecocom.2009.05.001. ISSN 1476-945X. OCLC 54836874. 
  32. ^ J.A. Sherratt (3 February 1993). “On the evolution of periodic plane waves in reaction-diffusion equations of λ-ω type”. SIAM J. Appl. Math. (SIAM) 54 (5): 1374-1385. doi:10.1137/S0036139993243746. ISSN 0036-1399. OCLC 962864035. 
  33. ^ a b N. Bekki; K. Nozaki (15 July 1985). “Formations of spatial patterns and holes in the generalized Ginzburg-Landau equation”. Phys. Lett. A (Amsterdam: Elsevier) 110 (3): 133-135. doi:10.1016/0375-9601(85)90759-5. ISSN 0375-9601. OCLC 192102249. 
  34. ^ J. A. Sherratt (2003). “Periodic travelling wave selection by Dirichlet boundary conditions in oscillatory reaction-diffusion systems”. SIAM J. Appl. Math. (SIAM) 63 (5): 1520-1538. doi:10.1137/S0036139902392483. ISSN 0036-1399. OCLC 962864035. 
  35. ^ J. Lega (15 May 2001). “Traveling hole solutions of the complex Ginzburg-Landau equation: a review”. Physica D (Elsevier) 152–153: 269-287. doi:10.1016/S0167-2789(01)00174-9. ISSN 0167-2789. OCLC 807718984. 
  36. ^ E.J. Doedel; J.P. Kernevez (1986). “AUTO: software for continuation and bifurcation problems in ordinary differential equations”. Applied Mathematics Report (Pasadena, CA: Caltech). 
  37. ^ B. Sandstede (March 7, 2002). “§ 3.4.2”. In B. Fiedler (PDF). Stability of travelling waves. Handbook of Dynamical Systems. II (1st ed.). Amsterdam: North-Holland. pp. 983-1055. ASIN 0444501681. ISBN 978-0444501684. NCID BA56806307. OCLC 48572345. http://www.dam.brown.edu/people/sandsted/publications/survey-stability-of-waves.pdf 
  38. ^ B. Deconinck; J.N. Kutz (20 November 2006). “Computing spectra of linear operators using the Floquet-Fourier-Hill method”. J. Comput. Phys. (Amsterdam: Elsevier) 219 (1): 296-321. doi:10.1016/j.jcp.2006.03.020. ISSN 0021-9991. LCCN 68-7628. OCLC 01640027. 
  39. ^ J.A. Sherratt (22 March 2012). “Numerical continuation of boundaries in parameter space between stable and unstable periodic travelling wave (wavetrain) solutions of partial differential equations”. Adv. Comput. Math 39 (1): 175–192. doi:10.1007/s10444-012-9273-0. 
  40. ^ J.A. Sherratt (1 January 2012). “Numerical continuation methods for studying periodic travelling wave (wavetrain) solutions of partial differential equations”. Appl. Math. Computation 218 (9): 4684-4694. doi:10.1016/j.amc.2011.11.005. 
  41. ^ A.C. Nilssen; O. Tenow; H. Bylund (29 January 2007). “Waves and synchrony in Epirrita autumnata/Operophtera brumata outbreaks II. Sunspot activity cannot explain cyclic outbreaks”. J. Animal Ecol. 76 (2): 269-275. doi:10.1111/j.1365-2656.2006.01205.x. ISSN 0021-8790. LCCN agr3-500027. OCLC 42799265. 
  42. ^ R. Moss; D.A. Elston; A. Watson (1 April 2000). “Spatial asynchrony and demographic travelling waves during red grouse population cycles”. Ecology 81 (4): 981-989. doi:10.1890/0012-9658(2000)081[0981:SAADTW]2.0.CO;2. ISSN 0012-9658. JSTOR 177172. LCCN sn97--23010. OCLC 35698209. 
  43. ^ M. Rietkerk; S.C. Dekker; P.C. de Ruiter; J. van de Koppel (24 September 2004). “Self-organized patchiness and catastrophic shifts in ecosystems”. Science (Washington, D.C.: AAAS) 305 (5692): 1926-1929. doi:10.1126/science.1101867. ISSN 0036-8075. JSTOR 3837866. LCCN 17-24346. OCLC 1644869. 
  44. ^ C. Valentin; J.M. d'Herbes; J. Poesen (September 1999). “Soil and water components of banded vegetation patterns”. Catena 37 (1–2): 1-24. doi:10.1016/S0341-8162(99)00053-3. 
  45. ^ D.L. Dunkerley; K.J. Brown (June 2002). “Oblique vegetation banding in the Australian arid zone: implications for theories of pattern evolution and maintenance”. J. Arid Environ. 52 (2): 163-181. doi:10.1006/jare.2001.0940. 
  46. ^ V. Deblauwe (2010). “Modulation des structures de vegetation auto-organisees en milieu aride / Self-organized vegetation pattern modulation in arid climates.”. PhD thesis (Brüssel: Université libre de Bruxelles). オリジナルの2013年9月27日時点におけるアーカイブ。. https://web.archive.org/web/20130927230423/http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-04122010-093151/. 
  47. ^ N. Kopell; L.N. Howard (15 June 1973). “Horizontal bands in Belousov reaction”. Science (Washington, D.C.: AAAS) 180 (4091): 1171-1173. doi:10.1126/science.180.4091.1171. ISSN 0036-8075. JSTOR 1736377. LCCN 17-24346. OCLC 1644869. 
  48. ^ G. Bordyugov; N. Fischer; H. Engel; N. Manz; O. Steinbock (1 June 2010). “Anomalous dispersion in the Belousov-Zhabotinsky reaction: experiments and modeling”. Physica D (Elsevier) 239 (11): 766-775. doi:10.1016/j.physd.2009.10.022. ISSN 0167-2789. OCLC 807718984. 
  49. ^ M.R.E.Proctor (2006). M. Rieutord, B. Dubrulle. ed. “Dynamo action and the sun” (PDF). Stellar Fluid Dynamics and Numerical Simulations: From the Sun to Neutron Stars. Series 21 (EAS Publications): 241-273. http://www.damtp.cam.ac.uk/user/mrep/solcyc/paper.pdf. 
  50. ^ M.R.E. Proctor; E.A. Spiegel (June 17, 1991). “Waves of solar activity”. The Sun and Cool Stars: Activity, Magnetism, Dynamos. Lecture Notes in Physics. 380. pp. 117-128. ASIN 3540539557. doi:10.1007/3-540-53955-7_116. ISBN 978-3-540-53955-1. ISSN 0075-8450. NCID BA12533626. OCLC 23355660 
  51. ^ E. Kaplan; V. Steinberg (13 July 1993). “Phase slippage, nonadiabatic effect, and dynamics of a source of traveling waves”. Phys. Rev. Lett. (Ridge, NY: APS) 71 (20): 3291-3294. doi:10.1103/PhysRevLett.71.3291. ISSN 0031-9007. LCCN 59-37543. OCLC 1715834. 
  52. ^ L. Pastur; M.T. Westra; D. Snouck; W. van de Water; M. van Hecke; C. Storm; W. van Saarloos (8 November 2001). “Sources and holes in a one-dimensional traveling-wave convection experiment”. Phys. Rev. E (Ridge, NY: APS) 67 (3). doi:10.1103/PhysRevE.67.036305. ISSN 1539-3755. LCCN 2001-227060. OCLC 45808357. 
  53. ^ P. Habdas; M.J. Case; J.R. de Bruyn (22 December 2000). “Behavior of sink and source defects in a one-dimensional traveling finger pattern”. Phys. Rev. E (Ridge, NY: APS) 63 (6). doi:10.1103/PhysRevE.63.066305. ISSN 1539-3755. LCCN 2001-227060. OCLC 45808357. 


「周期進行波」の続きの解説一覧


このページでは「ウィキペディア」から周期進行波を検索した結果を表示しています。
Weblioに収録されているすべての辞書から周期進行波を検索する場合は、下記のリンクをクリックしてください。
 全ての辞書から周期進行波 を検索

英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「周期進行波」の関連用語

周期進行波のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



周期進行波のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの周期進行波 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS