デジタル回路
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/10 15:54 UTC 版)
概要
正確に連続な値の変化を再現する必要がなく、いくつかの既知の状態だけを扱えばよいので、アナログ回路よりも扱いが容易なことも多い。一方、電流の合計などとして加算を扱うことができる、といったように、アナログ的なほうが扱いが簡単な場合もある。デジタル回路は、その機能に応じて様々な回路が考案されている。以下の代表的なデジタル回路については、それぞれの項目に詳細な説明があり汎用ロジックICにこれらの製品に関する説明がある。
利点
アナログ回路と比較したときのデジタル回路の利点は[2]、伝送された信号がノイズによって劣化しても、あらかじめ見込んだ許容範囲内ならば、ディジタル的に表現された情報は劣化することなく伝送できるという点である。例えば、連続な音響信号も1と0の並びとして伝送すれば、ノイズが1と0を区別できなくするほど大きくない限り、誤りなしで元の音響信号を再現することができる。アナログ記憶されているLPレコードが直径12インチ (30cm) で収録時間30分に対し、直径12cmのコンパクトディスクには約1時間分の音楽を録音でき、その記録は約60億個の1と0で構成されている。
デジタルシステムでは、より正確に信号を表そうとするとより多くのビット数を必要とする。すると信号を処理するのにより多くのデジタル回路が必要となるが、個々のビットの処理に必要なハードウェアは同種のものである。アナログシステムで分解能を上げようとすれば、回路の線形性やノイズ特性といった根本的な改善が必要となる。
コンピュータ制御のデジタルシステムはソフトウェアで制御され、ハードウェアを改造しなくとも機能を追加できる。この場合の機能追加は工場の外で行われ、製品のソフトウェアをアップデートすることで行われる。製品設計に問題があったとしても、顧客が自分の手で後から修正することも可能となる。
情報の格納はアナログよりもデジタル回路の方が容易である。デジタルシステムのノイズ耐性により、格納して取り出す際にもデータが劣化しない。アナログシステムでは、経年劣化や磨耗によってノイズが蓄積し、格納されている情報が劣化する。デジタルシステムでは、そのようなノイズが一定のレベル未満であれば、情報を完璧に復元できる。
欠点
場合によっては同じことをするアナログ回路よりもエネルギーを多く消費することがあり、結果として発熱も多くなる。携帯型のバッテリー駆動のシステムでは、このことがデジタルシステム利用の制約になることがある。
例えば、携帯電話は基地局との無線通信のフロントエンド部(増幅や同調[注釈 3])に低消費電力のアナログ回路を使うことが多い。一方、基地局は通常の電力網から電力供給されるので、電力消費が大きいが非常に柔軟なソフトウェア無線を利用できる。その場合、無線の規格変更にもプログラムの変更で柔軟に対応可能である。
デジタルシステムの多くは連続なアナログ信号を離散的なデジタル信号に変換する必要がある。このとき量子化誤差を生じる。量子化誤差を低減するには、必要な忠実度にあわせて信号を表すデジタルデータの量を増やせばよい。標本化定理は、アナログ信号を正確に表すのに必要なデジタルデータの量について重要な指針を与える。
システムによっては、デジタルデータのごく一部が失われたり壊れたりしただけで関連する大きなデータブロックの意味が完全に変わってしまう。例えばアナログのテレビは信号(電波)が弱くなると徐々にノイズが多くなるが、デジタルテレビではノイズがあるしきい値を越えると突然映像の再現が全くできなくなる。
デジタルの脆さはシステムの頑健性を高める設計によって改善できる。例えば、パリティビットや誤り検出訂正といった手法を信号経路に挿入する。それらは誤りを検出して、さらにその誤りを訂正できるものであり、あるいは少なくともデータの新たなコピーの再送を要求できる。状態機械では、未使用状態を捉えるとリセットシーケンスのトリガーとしたり、誤り訂正処理を開始したりするよう状態遷移ロジックを設計できる。
デジタルのメモリシステムや通信システムは、誤り検出訂正の技法として追加のデータを使って訂正するという方法を採用することができる。 一方で、1ビットの誤りにも無防備なデジタルシステムもある。これは、より下のレイヤで誤りを検出して訂正するか、訂正不能な場合は破棄・再送するなどしていて、誤りが入り込まないことを前提にできる場合である。たとえば、FTPには通常、誤り訂正などは無いが、それはTCPにチェックサムによるチェックがあるためであり、さらに良く使われているイーサネットでCRCによるチェックが入るため、誤りはまず無いとして良いからである。
注釈
- ^ 他にも、基準となる交流波に対する位相差、電圧ではなく電流ベースなど、いろいろありうる。
- ^ 具体的に許される範囲は異なる。仕様などでは中間に必ず「定常的な状態として、この範囲にしてはならない」という範囲があることが多い。シュミットトリガなど故意にヒステリシスを大きく取り、直前の状態に引きずられるものとして、これを避けることもある。ただしそれでも、非同期系から同期系へのインタフェースには、必ず、セットアップ時間とホールド時間という、何らかのタイミングの瞬間の前後に変動が許されない期間があるため、完全には、準安定状態の可能性を無視してはいけない(en:Metastability in electronics)。
- ^ 増幅と同調の順序といった具体的な構成は実例により様々であろう(複同調といった構成もある)。
- ^ TTLの出力電圧範囲の入力を許容するCMOSの標準ロジックICもあり、このようなシリーズは「74HCT~」「74ACT~」のように、型番に「T」の文字が入っている。
- ^ 大小異なる抵抗を持つ2つの抵抗器を並列に接続した場合、電流は小さな抵抗側により多く流れて、大きな抵抗側には電流はそれほど流れない。抵抗値の大きなプルアップやプルダウンの抵抗器の有無は端子に接続された状態での動作にはそれほど影響しない。
- ^ 英: high-impedance
- ^ 英: three-state
- ^ 英: gate
- ^ 英: enable
- ^ 英: output enable
- ^ 英: chip select
- ^ MIL-HDBK-217F notice 2, section 5.3 での10万ゲートの0.8μmCMOS商用集積回路を40℃で使用した場合の値。2010年にはプロセスルールが0.045μmまで小さくなり、ゲート毎に必要なチップ外の接続が少なくなっているため、さらにMTBFが延びている。
出典
- ^ "ディジタル回路". 改訂新版 世界大百科事典. コトバンクより2024年3月10日閲覧。
- ^ ポール・ホロヴィッツ、ウィンフィールド・フィル共著「The Art of Electronics」第二版、ケンブリッジ大学出版局、1989年。ISBN 0-521-37095-7、471ページ
- ^ Brown S & Vranesic Z. (2009). Fundamentals of Digital Logic with VHDL Design. 3rd ed. New York, N.Y.: Mc Graw Hill.
- ^ ヴィリアム・クライツ(2002年)「Digital and Microprocessor Fundamentals: Theory and Application」第4版、ピアソン・プレンティスホール
デジタル回路と同じ種類の言葉
固有名詞の分類
- デジタル回路のページへのリンク