タンパク質構造予測 二次構造の予測

タンパク質構造予測

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/03 08:41 UTC 版)

二次構造の予測

二次構造予測とは、タンパク質のアミノ酸配列の知識のみに基づいて、タンパク質の局所的な二次構造を予測することを目的としたバイオインフォマティクスの一連の技術である。タンパク質の場合、予測は、アミノ酸配列の領域を、適当なαヘリックスβストランド(しばしば「拡張」コンフォメーションと呼ばれる)、ターンのいずれかに割り当てることで構成される。予測の成功は、タンパク質の結晶構造に適用されたDSSPアルゴリズム(または同様。例:STRIDE)の結果と比較して判断される。タンパク質の膜貫通ヘリックス英語版コイルドコイルなど、明確に定義された特定のパターンを検出するために、特殊なアルゴリズムが開発されている[1]

タンパク質の二次構造を予測する現代の最良の方法では、機械学習と配列アライメントを使用した後、80%の精度に達すると主張されている[3]。この高い精度により、予測手法は、折りたたみ認識法de novoab initioタンパク質構造予測、構造モチーフの分類、および配列アライメントの精密化のための改善機能として使用することができる。現在のタンパク質二次構造予測手法の精度は、LiveBench英語版EVA英語版などのベンチマークで毎週評価されている。

背景

1960年代から1970年代初頭に導入された初期の二次構造予測法は[4][5][6][7][8]、可能性の高いαヘリックスを特定することに重点が置かれ、主にらせん-コイル遷移モデル英語版に基づいていた[9]。1970年代に登場したβシートを含む、大幅に精度の高い予測は、既知の解明済みの構造から得られた確率パラメータに基づく統計的評価に依存していた。これらの手法を1つの配列に適用した場合、一般的にはせいぜい60~65%程度の精度で、βシートを過小評価することが多い[1]。二次構造の進化的保存は、多重整列で多数の相同配列英語版を同時に評価し、整列されたアミノ酸の列の正味の二次構造傾向を計算することで開発できる。既知のタンパク質構造の大規模なデータベースと、ニューラルネットサポートベクターマシンなどの最新の機械学習手法を併用することで、これらの手法は球状タンパク質において総合的に80%の精度を達成できる[10]。精度の理論的な上限は約90%であるが[10]、これは二次構造の末端付近でDSSPの割り当てが特異になることが原因の一つである。二次構造の末端付近では、ネイティブな状態では局所的な立体構造が変化するが、結晶中ではパッキングの制約により単一の立体構造を取ることを余儀なくされる場合がある。さらに、典型的な二次構造予測法では、二次構造の形成に対する三次構造の影響を考慮していない。たとえば、ヘリックスと予測された配列であっても、タンパク質のβシート領域内に位置し、その側鎖が隣接するものとうまく結合していれば、βストランド構造をとることができる可能性がある。また、タンパク質の機能や環境に起因する劇的な構造変化によっても、局所的な二次構造が変化することがある。

歴史的展望

現在までに20種類以上の二次構造予測法が開発されている。最初のアルゴリズムの1つはChou-Fasman法英語版で、これは主に二次構造の種類ごとに各アミノ酸が出現する相対的な頻度から決定される確率パラメータに依存している[11]。1970年代半ばに解析された構造の小さなサンプルから決定されたオリジナルのChou-Fasmanパラメータは、最初の発表からパラメータが更新されたものの、現代の手法と比較して不十分な結果となっている。Chou-Fasman法は、二次構造の予測において、およそ50~60%の精度である[1]

次に注目すべきは、情報理論に基づいたGOR法英語版というプログラムである。これは、より強力な確率的手法であるベイズ推定を使用する[12]。GOR法では、各アミノ酸が特定の二次構造を持つ確率だけでなく、隣接するアミノ酸の寄与を考慮した上で、各構造を持つアミノ酸の条件付き確率も考慮する(隣接するアミノ酸が同じ構造を持つことは想定されていない)。アミノ酸の構造的傾向は、プロリングリシンなどの少数のアミノ酸に対してのみ強く現れるため、このアプローチはChou-Fasmanのアプローチよりも感度が高く、精度も高い。多くの隣接アミノ酸のそれぞれからの弱い寄与が、全体として強い効果をもたらす可能性がある。オリジナルのGOR法の精度は約65%で、βシートよりもαヘリックスの予測で劇的な成功をおさめたが、βシートはループや無秩序な領域としばしば誤認された[1]

もう一つの大きな進歩は、機械学習の手法を用いたことである。最初に人工ニューラルネットワークの手法が使われた。トレーニングセットとして解明された構造を使用し、二次構造の特定の配置に関連する共通の配列モチーフを識別する。これらの手法は70%以上の精度で予測することができるが、完全なβシートの配置に必要な拡張コンフォメーション形成を助ける水素結合パターンを評価するための三次元構造情報がないため、βストランドの予測が不十分になることが多い。ニューラルネットワークを用いたタンパク質の二次構造予測プログラムとしては、PSIPRED英語版JPRED英語版などが知られている[1]。次に、サポートベクターマシン(SVM)は、統計的手法では特定が困難なターンの位置を予測するのに特に有効であることがわかっている[13][14]

機械学習技術を拡張して、未割り当て領域の主鎖二面角など、タンパク質のよりきめ細かい局所的特性の予測が試みられている。この問題には、SVM[15]とニューラルネットワーク[16]の両方が適用されている[13]。最近では、SPINE-Xを使って実数値のねじれ角を正確に予測し、ab initio構造予測に用いることに成功している[17]

その他の改善

二次構造の形成は、タンパク質の配列に加えて、他の要因にも左右されることが報告されている。たとえば、二次構造の傾向は、局所的な環境[18]、残基の溶媒へのアクセス性[19]、タンパク質の構造クラス[20]、さらにはタンパク質の由来となる生物にも依存することが報告されている[21]。このような考察に基づいて、タンパク質の構造クラス[22]、残基のアクセス可能な表面積[23][24]、さらには接触数英語版の情報を加えることで、二次構造予測を改善できることがいくつかの研究で示されている[25]


  1. ^ a b c d e f g h Mount DM (2004). Bioinformatics: Sequence and Genome Analysis. 2. Cold Spring Harbor Laboratory Press. ISBN 978-0-87969-712-9 
  2. ^ Huang JY, Brutlag DL (January 2001). “The EMOTIF database”. Nucleic Acids Research 29 (1): 202–4. doi:10.1093/nar/29.1.202. PMC 29837. PMID 11125091. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC29837/. 
  3. ^ Pirovano W, Heringa J (2010). “Protein secondary structure prediction”. Data Mining Techniques for the Life Sciences. Methods in Molecular Biology. 609. pp. 327–48. doi:10.1007/978-1-60327-241-4_19. ISBN 978-1-60327-240-7. PMID 20221928 
  4. ^ Guzzo AV (November 1965). “The influence of amino-acid sequence on protein structure”. Biophysical Journal 5 (6): 809–22. Bibcode1965BpJ.....5..809G. doi:10.1016/S0006-3495(65)86753-4. PMC 1367904. PMID 5884309. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1367904/. 
  5. ^ Prothero JW (May 1966). “Correlation between the distribution of amino acids and alpha helices”. Biophysical Journal 6 (3): 367–70. Bibcode1966BpJ.....6..367P. doi:10.1016/S0006-3495(66)86662-6. PMC 1367951. PMID 5962284. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1367951/. 
  6. ^ Schiffer M, Edmundson AB (March 1967). “Use of helical wheels to represent the structures of proteins and to identify segments with helical potential”. Biophysical Journal 7 (2): 121–35. Bibcode1967BpJ.....7..121S. doi:10.1016/S0006-3495(67)86579-2. PMC 1368002. PMID 6048867. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1368002/. 
  7. ^ Kotelchuck D, Scheraga HA (January 1969). “The influence of short-range interactions on protein onformation. II. A model for predicting the alpha-helical regions of proteins”. Proceedings of the National Academy of Sciences of the United States of America 62 (1): 14–21. Bibcode1969PNAS...62...14K. doi:10.1073/pnas.62.1.14. PMC 285948. PMID 5253650. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC285948/. 
  8. ^ Lewis PN, Go N, Go M, Kotelchuck D, Scheraga HA (April 1970). “Helix probability profiles of denatured proteins and their correlation with native structures”. Proceedings of the National Academy of Sciences of the United States of America 65 (4): 810–5. Bibcode1970PNAS...65..810L. doi:10.1073/pnas.65.4.810. PMC 282987. PMID 5266152. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC282987/. 
  9. ^ Froimowitz M, Fasman GD (1974). “Prediction of the secondary structure of proteins using the helix-coil transition theory”. Macromolecules 7 (5): 583–9. Bibcode1974MaMol...7..583F. doi:10.1021/ma60041a009. PMID 4371089. 
  10. ^ a b Dor O, Zhou Y (March 2007). “Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training”. Proteins 66 (4): 838–45. doi:10.1002/prot.21298. PMID 17177203. 
  11. ^ Chou PY, Fasman GD (January 1974). “Prediction of protein conformation”. Biochemistry 13 (2): 222–45. doi:10.1021/bi00699a002. PMID 4358940. 
  12. ^ Garnier J, Osguthorpe DJ, Robson B (March 1978). “Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins”. Journal of Molecular Biology 120 (1): 97–120. doi:10.1016/0022-2836(78)90297-8. PMID 642007. 
  13. ^ a b Pham TH, Satou K, Ho TB (April 2005). “Support vector machines for prediction and analysis of beta and gamma-turns in proteins”. Journal of Bioinformatics and Computational Biology 3 (2): 343–58. doi:10.1142/S0219720005001089. PMID 15852509. 
  14. ^ Zhang Q, Yoon S, Welsh WJ (May 2005). “Improved method for predicting beta-turn using support vector machine”. Bioinformatics 21 (10): 2370–4. doi:10.1093/bioinformatics/bti358. PMID 15797917. 
  15. ^ Zimmermann O, Hansmann UH (December 2006). “Support vector machines for prediction of dihedral angle regions”. Bioinformatics 22 (24): 3009–15. doi:10.1093/bioinformatics/btl489. PMID 17005536. 
  16. ^ Kuang R, Leslie CS, Yang AS (July 2004). “Protein backbone angle prediction with machine learning approaches”. Bioinformatics 20 (10): 1612–21. doi:10.1093/bioinformatics/bth136. PMID 14988121. 
  17. ^ Faraggi E, Yang Y, Zhang S, Zhou Y (November 2009). “Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction”. Structure 17 (11): 1515–27. doi:10.1016/j.str.2009.09.006. PMC 2778607. PMID 19913486. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778607/. 
  18. ^ Zhong L, Johnson WC (May 1992). “Environment affects amino acid preference for secondary structure”. Proceedings of the National Academy of Sciences of the United States of America 89 (10): 4462–5. Bibcode1992PNAS...89.4462Z. doi:10.1073/pnas.89.10.4462. PMC 49102. PMID 1584778. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC49102/. 
  19. ^ Macdonald JR, Johnson WC (June 2001). “Environmental features are important in determining protein secondary structure”. Protein Science 10 (6): 1172–7. doi:10.1110/ps.420101. PMC 2374018. PMID 11369855. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2374018/. 
  20. ^ Costantini S, Colonna G, Facchiano AM (April 2006). “Amino acid propensities for secondary structures are influenced by the protein structural class”. Biochemical and Biophysical Research Communications 342 (2): 441–51. doi:10.1016/j.bbrc.2006.01.159. PMID 16487481. 
  21. ^ Marashi SA, Behrouzi R, Pezeshk H (January 2007). “Adaptation of proteins to different environments: a comparison of proteome structural properties in Bacillus subtilis and Escherichia coli”. Journal of Theoretical Biology 244 (1): 127–32. doi:10.1016/j.jtbi.2006.07.021. PMID 16945389. 
  22. ^ Costantini S, Colonna G, Facchiano AM (October 2007). “PreSSAPro: a software for the prediction of secondary structure by amino acid properties”. Computational Biology and Chemistry 31 (5–6): 389–92. doi:10.1016/j.compbiolchem.2007.08.010. PMID 17888742. 
  23. ^ Adamczak R, Porollo A, Meller J (May 2005). “Combining prediction of secondary structure and solvent accessibility in proteins”. Proteins 59 (3): 467–75. doi:10.1002/prot.20441. PMID 15768403. 
  24. ^ Momen-Roknabadi A, Sadeghi M, Pezeshk H, Marashi SA (August 2008). “Impact of residue accessible surface area on the prediction of protein secondary structures”. BMC Bioinformatics 9: 357. doi:10.1186/1471-2105-9-357. PMC 2553345. PMID 18759992. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2553345/. 
  25. ^ Lakizadeh A, Marashi SA (2009). “Addition of contact number information can improve protein secondary structure prediction by neural networks”. Excli J. 8: 66–73. http://www.excli.de/vol8/lakizadeh_03_2009/lakizadeh_250309a_proof.pdf. 
  26. ^ Dorn, Márcio; e Silva, Mariel Barbachan; Buriol, Luciana S.; Lamb, Luis C. (2014-12-01). “Three-dimensional protein structure prediction: Methods and computational strategies” (英語). Computational Biology and Chemistry 53: 251–276. doi:10.1016/j.compbiolchem.2014.10.001. ISSN 1476-9271. PMID 25462334. http://www.sciencedirect.com/science/article/pii/S1476927114001248. 
  27. ^ a b c Zhang Y (June 2008). “Progress and challenges in protein structure prediction”. Current Opinion in Structural Biology 18 (3): 342–8. doi:10.1016/j.sbi.2008.02.004. PMC 2680823. PMID 18436442. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2680823/. 
  28. ^ Ovchinnikov S, Kim DE, Wang RY, Liu Y, DiMaio F, Baker D (September 2016). “Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta”. Proteins 84 Suppl 1: 67–75. doi:10.1002/prot.24974. PMC 5490371. PMID 26677056. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5490371/. 
  29. ^ Hong SH, Joo K, Lee J (November 2018). “ConDo: Protein domain boundary prediction using coevolutionary information”. Bioinformatics 35 (14): 2411–2417. doi:10.1093/bioinformatics/bty973. PMID 30500873. 
  30. ^ Wollacott AM, Zanghellini A, Murphy P, Baker D (February 2007). “Prediction of structures of multidomain proteins from structures of the individual domains”. Protein Science 16 (2): 165–75. doi:10.1110/ps.062270707. PMC 2203296. PMID 17189483. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2203296/. 
  31. ^ Xu D, Jaroszewski L, Li Z, Godzik A (July 2015). “AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain-domain interaction prediction”. Bioinformatics 31 (13): 2098–105. doi:10.1093/bioinformatics/btv092. PMC 4481839. PMID 25701568. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481839/. 
  32. ^ Shaw DE, Dror RO, Salmon JK, Grossman JP, Mackenzie KM, Bank JA, Young C, Deneroff MM, Batson B, Bowers KJ, Chow E (2009). Millisecond-scale molecular dynamics simulations on Anton. Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis - SC '09. p. 1. doi:10.1145/1654059.1654126. ISBN 9781605587448
  33. ^ Pierce LC, Salomon-Ferrer R, de Oliveira CA, McCammon JA, Walker RC (September 2012). “Routine Access to Millisecond Time Scale Events with Accelerated Molecular Dynamics”. Journal of Chemical Theory and Computation 8 (9): 2997–3002. doi:10.1021/ct300284c. PMC 3438784. PMID 22984356. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438784/. 
  34. ^ Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A (July 2016). “Coarse-Grained Protein Models and Their Applications”. Chemical Reviews 116 (14): 7898–936. doi:10.1021/acs.chemrev.6b00163. PMID 27333362. 
  35. ^ Cheung NJ, Yu W (November 2018). “De novo protein structure prediction using ultra-fast molecular dynamics simulation”. PLOS ONE 13 (11): e0205819. Bibcode2018PLoSO..1305819C. doi:10.1371/journal.pone.0205819. PMC 6245515. PMID 30458007. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6245515/. 
  36. ^ Göbel U, Sander C, Schneider R, Valencia A (April 1994). “Correlated mutations and residue contacts in proteins”. Proteins 18 (4): 309–17. doi:10.1002/prot.340180402. PMID 8208723. 
  37. ^ Taylor WR, Hatrick K (March 1994). “Compensating changes in protein multiple sequence alignments”. Protein Engineering 7 (3): 341–8. doi:10.1093/protein/7.3.341. PMID 8177883. 
  38. ^ Neher E (January 1994). “How frequent are correlated changes in families of protein sequences?”. Proceedings of the National Academy of Sciences of the United States of America 91 (1): 98–102. Bibcode1994PNAS...91...98N. doi:10.1073/pnas.91.1.98. PMC 42893. PMID 8278414. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC42893/. 
  39. ^ Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C (2011). “Protein 3D structure computed from evolutionary sequence variation”. PLOS ONE 6 (12): e28766. Bibcode2011PLoSO...628766M. doi:10.1371/journal.pone.0028766. PMC 3233603. PMID 22163331. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233603/. 
  40. ^ Burger L, van Nimwegen E (January 2010). “Disentangling direct from indirect co-evolution of residues in protein alignments”. PLOS Computational Biology 6 (1): e1000633. Bibcode2010PLSCB...6E0633B. doi:10.1371/journal.pcbi.1000633. PMC 2793430. PMID 20052271. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2793430/. 
  41. ^ Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C, Zecchina R, Onuchic JN, Hwa T, Weigt M (December 2011). “Direct-coupling analysis of residue coevolution captures native contacts across many protein families”. Proceedings of the National Academy of Sciences of the United States of America 108 (49): E1293-301. arXiv:1110.5223. Bibcode2011PNAS..108E1293M. doi:10.1073/pnas.1111471108. PMC 3241805. PMID 22106262. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3241805/. 
  42. ^ Nugent T, Jones DT (June 2012). “Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis”. Proceedings of the National Academy of Sciences of the United States of America 109 (24): E1540-7. Bibcode2012PNAS..109E1540N. doi:10.1073/pnas.1120036109. PMC 3386101. PMID 22645369. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386101/. 
  43. ^ Hopf TA, Colwell LJ, Sheridan R, Rost B, Sander C, Marks DS (June 2012). “Three-dimensional structures of membrane proteins from genomic sequencing”. Cell 149 (7): 1607–21. doi:10.1016/j.cell.2012.04.012. PMC 3641781. PMID 22579045. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641781/. 
  44. ^ Jin, Shikai; Chen, Mingchen; Chen, Xun; Bueno, Carlos; Lu, Wei; Schafer, Nicholas P.; Lin, Xingcheng; Onuchic, José N. et al. (9 June 2020). “Protein Structure Prediction in CASP13 Using AWSEM-Suite”. Journal of Chemical Theory and Computation 16 (6): 3977–3988. doi:10.1021/acs.jctc.0c00188. PMID 32396727. 
  45. ^ Zhang Y, Skolnick J (January 2005). “The protein structure prediction problem could be solved using the current PDB library”. Proceedings of the National Academy of Sciences of the United States of America 102 (4): 1029–34. Bibcode2005PNAS..102.1029Z. doi:10.1073/pnas.0407152101. PMC 545829. PMID 15653774. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545829/. 
  46. ^ Bowie JU, Lüthy R, Eisenberg D (July 1991). “A method to identify protein sequences that fold into a known three-dimensional structure”. Science 253 (5016): 164–70. Bibcode1991Sci...253..164B. doi:10.1126/science.1853201. PMID 1853201. 
  47. ^ Dunbrack RL (August 2002). “Rotamer libraries in the 21st century”. Current Opinion in Structural Biology 12 (4): 431–40. doi:10.1016/S0959-440X(02)00344-5. PMID 12163064. 
  48. ^ Ponder JW, Richards FM (February 1987). “Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes”. Journal of Molecular Biology 193 (4): 775–91. doi:10.1016/0022-2836(87)90358-5. PMID 2441069. 
  49. ^ Lovell SC, Word JM, Richardson JS, Richardson DC (August 2000). “The penultimate rotamer library”. Proteins 40 (3): 389–408. doi:10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2. PMID 10861930. 
  50. ^ Shapovalov MV, Dunbrack RL (June 2011). “A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions”. Structure 19 (6): 844–58. doi:10.1016/j.str.2011.03.019. PMC 3118414. PMID 21645855. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3118414/. 
  51. ^ Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (January 2010). “MolProbity: all-atom structure validation for macromolecular crystallography”. Acta Crystallographica. Section D, Biological Crystallography 66 (Pt 1): 12–21. doi:10.1107/S0907444909042073. PMC 2803126. PMID 20057044. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803126/. 
  52. ^ Bower MJ, Cohen FE, Dunbrack RL (April 1997). “Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool”. Journal of Molecular Biology 267 (5): 1268–82. doi:10.1006/jmbi.1997.0926. PMID 9150411. 
  53. ^ Voigt CA, Gordon DB, Mayo SL (June 2000). “Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design”. Journal of Molecular Biology 299 (3): 789–803. doi:10.1006/jmbi.2000.3758. PMID 10835284. 
  54. ^ Krivov GG, Shapovalov MV, Dunbrack RL (December 2009). “Improved prediction of protein side-chain conformations with SCWRL4”. Proteins 77 (4): 778–95. doi:10.1002/prot.22488. PMC 2885146. PMID 19603484. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885146/. 
  55. ^ Battey JN, Kopp J, Bordoli L, Read RJ, Clarke ND, Schwede T (2007). “Automated server predictions in CASP7”. Proteins 69 Suppl 8 (Suppl 8): 68–82. doi:10.1002/prot.21761. PMID 17894354. 





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「タンパク質構造予測」の関連用語

タンパク質構造予測のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



タンパク質構造予測のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのタンパク質構造予測 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS