聴覚と再生回路
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/17 09:22 UTC 版)
ヒトの聴覚を司る感覚器官である蝸牛(かぎゅう)には正帰還を用いた再生回路と同様の原理が用いられている。 内耳にあるカタツムリのような形状の蝸牛は音の周波数情報を神経細胞の電気信号に変換する器官だが、その機械的な構造から予想される周波数特性よりはるかに選択度が高く、また感度も非常に高いことが知られている。例えば、最小可聴値の研究からヒトは蝸牛内の 10-10m から 10-11m 程度のわずかな変位を検出可能と言われ、これは蝸牛での熱雑音による変位と同じか小さい値である。蝸牛は単純で受動的なものでなく非線形で能動的な性質を持ち、再生回路の集合体のように働いている。 蝸牛内で音を分析する役割を持つ基底膜(basilar membrane)上にはコルチ器と呼ばれる感覚器官があり、この内部に多数の内有毛細胞(Inner hair cells)と外有毛細胞(Outer hair cells)とが並行して規則的に並んでいる。内有毛細胞と外有毛細胞の働きは対照的で、内有毛細胞には脳に向かう求心性神経が、外有毛細胞には脳からの遠心性神経がつながっている。 聴覚の受容器である内有毛細胞は音の振動で興奮し、蝸牛神経を経由して大脳皮質の聴覚野に対象周波数の情報を送る。外有毛細胞は逆に音の振動に合わせてタンパク質モーターの長さを素早く変えることで特定周波数の振動を強める働きをする。これは再生検波回路での再生コイルによる正帰還のように働き、選択度と感度を向上させるのに役立っている。再生量は最適な感度になるよう自動的に調節され、高い感度とダイナミックレンジの広さとを両立させている。再生回路で再生量を上げすぎた場合と同様、蝸牛も特定周波数で一時的に発振して小さな音を発生させることがある。これは耳音響放射(Otoacoustic Emissions、OAE)の一種である自発耳音響放射(Spontaneous Otoacoustic Emissions)として知られている。 ヒト以外のほ乳類の聴覚も同じメカニズムを用いており、ほ乳類以外の聴覚でもメカニズムは異なるが同様の仕組みが発見されている。 蝸牛が再生回路のように動作しているという仮説を最初に提案したのはトーマス・ゴールド(Thomas Gold)で、1948年に発表された。リンパ液に満たされた蝸牛の内部ではその粘性による損失のため高い選択度を得ることができず、受動的な共振だけでは十分な選択度が得られないことが当時すでにわかっていた。この頃の無線の世界では選択度と感度を上げるための手段として再生回路が良く知られており、同じ目的のために自然界でも同様の仕組みが使われているに違いないとゴールドは考えた。しかしこの仮説は他の研究者に受け入れられなかった。再生回路の発振と同様、蝸牛も病変などにより何らかの音を発生させるとゴールドは予想し、耳鳴りの患者の耳から音を検出する試みも行ったがそのような現象は発見できなかった。ゴールドはその後聴覚研究から離れ天文学と地球物理学の研究者になり、ゴールドの仮説はそのまま忘れ去られた。 30年後の1978年、デヴィッド・ケンプ(David T. Kemp)は音を聞いた直後や無音状態の時に耳から小さな音が発生する現象を発表した。ケンプは耳鳴りの患者ではなく健常者を対象にした。この現象は耳音響放射と名付けられ、蝸牛が単純で受動的なものでないことを示していた。この発見が大きな転機となり、それまで十分理解されていなかった外有毛細胞の役割など蝸牛に関する多くの研究が行われ、ゴールドの仮説が再発見されると共にその正しさが認められるようになった。
※この「聴覚と再生回路」の解説は、「再生回路」の解説の一部です。
「聴覚と再生回路」を含む「再生回路」の記事については、「再生回路」の概要を参照ください。
- 聴覚と再生回路のページへのリンク