実験の動機
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/07 09:32 UTC 版)
「サドベリー・ニュートリノ天文台」の記事における「実験の動機」の解説
地球に届く太陽ニュートリノの数を測定することは1960年代には行われていて、SNO以前のすべての実験のニュートリノ観測数は標準太陽モデルによる予測の3分の1から半分であった。複数の実験でこの矛盾が確認され、この効果は太陽ニュートリノ問題として知られるようになった。数十年にわたり多くのアイデアを出してこの効果の説明が試みられたが、そのひとつがニュートリノ振動の仮説であった。SNO以前のすべての太陽ニュートリノ検出器は主としてあるいは専ら電子ニュートリノに感度があり、ミューオンニュートリノとタウニュートリノの情報はわずかあるいは全く得られなかった。 1984年に、カリフォルニア大学アーバイン校のハーバード・チェンが太陽ニュートリノに対する検出器として重水を用いることの利点を初めて指摘した。それまでの検出器とは異なり、重水を用いることにより、検出器は2つの反応に感度を持つようになる。一方はすべてのニュートリノフレーバーに感度を持つ反応、他方は電子ニュートリノのみに感度を持つ反応である。 したがって、このような検出器はニュートリノ振動を直接測定できる。カナダ原子力公社はCANDU原子炉のために大量の重水の備蓄しており、必要な量(市場価格C$330,000,000)を無償で貸し出す用意があったため、カナダは魅力的な場所であった。 サドベリーのクレイトン鉱山は、世界で最も深い鉱山のひとつで、したがって低放射線バックグラウンドであり、チェンが提案した実験を行うのに理想的な場所としてすぐに認められた。そしてこの鉱山の経営陣は喜んで設備費のみでこの場所を使えるようにした:440。 SNO共同研究グループは第一回目のミーティングを1984年に開催した。当時、TRIUMFのK中間子ファクトリーの連邦政府資金調達の提案と競合し、多く大学がSNOを支持し、その開発がすぐに選択された。正式に進行したのは1990年である。 この実験はニュートリノ相互作用によって水中で生成された相対論的電子が生み出す光を観測する。相対論的電子は媒体中を移行するとき、チェレンコフ効果によってエネルギーを失い青い光の円錐を生み出す。直接検出されるのはこの光である。
※この「実験の動機」の解説は、「サドベリー・ニュートリノ天文台」の解説の一部です。
「実験の動機」を含む「サドベリー・ニュートリノ天文台」の記事については、「サドベリー・ニュートリノ天文台」の概要を参照ください。
- 実験の動機のページへのリンク