原因に対する対策
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/08/14 03:34 UTC 版)
「コメット連続墜落事故」の記事における「原因に対する対策」の解説
対策として、航空機の耐疲労設計と疲労強度確認試験が大きく見直されることとなった。この見直しの中で、フェイルセーフという当時としては画期的な設計思想が生み出された。即ち、一部の部材が破壊されても、残りの部材によって飛行を続け、着陸まで飛行を続けられるような設計である。この概念は、近年では損傷許容設計という概念へ発展している。 コメット1の外壁材(外皮)の厚さは1/16 インチ(約1.6 mm)という極薄なものであった。これはエンジンの推力が不足気味だったため、究極の軽量化策として採用されたが、結果として金属疲労を生じさせる一因となった。そのため、改良型のコメット4では胴体の外壁材の厚みは増やされた。 コメットの事故後、全ての旅客機は、実物の1機によって試験を行ない、耐用時間に対して十分に安全な寿命が確保されているか、フェイルセーフが確保されていることを証明しなくては、公共の空を飛ぶことは出来ないこととされた。 また、コメットの場合は客室窓などの開口部に角(かど)があり、その箇所に応力が集中するために亀裂を発生しやすいという結果も出ていた。このような開口部はDC-3などのレシプロ機に多く、展望性が良いことから広く用いられていたが、これらの機体では非与圧のため問題は起きなかったに過ぎなかった。このため、コメット以後に開発された航空機においては、開口部に角を付ける事が絶対の禁忌とされるようになった。現在、高空を飛行するほとんどの飛行機の窓の隅が丸くなっているのは、これが理由である。コメットも以後製作された改善型機体の窓は円形になっており、コメットの機首と尾翼の部分の設計を流用して開発されたフランスのシュド・カラベル(1955年初飛行)は、開口部の窓は丸みを付けた三角形(おむすび型)を採用した。 金属疲労の制御は可能であるが、金属素材にある不純物や、衝撃によって生じるクラックの根絶は不可能である。そのため目視や超音波によるメンテナンス(探傷検査。非破壊検査を参照)を行うこととした。また致命的な破壊を招く恐れがある場合には部材そのものの交換も実施されるようになった。 これらの対策は、コメットだけにとどまらず、その後の航空の安全に大きく寄与することとなった。そのため、コメットの一連の事故は旅客機の安全性を向上させたといえる。
※この「原因に対する対策」の解説は、「コメット連続墜落事故」の解説の一部です。
「原因に対する対策」を含む「コメット連続墜落事故」の記事については、「コメット連続墜落事故」の概要を参照ください。
- 原因に対する対策のページへのリンク