スイッチング素子(アドレス用トランジスター)
DMDは各鏡を動作させるためのトランジスターが必要で、これを「スイッチング素子」と呼ぶ。DMDチップの裏に配置されている。液晶のように画素間に素子を設置しないため、DMDはドット線の目立たない画面を実現しやすい。
(執筆:オーディオビジュアル評論家 麻倉怜士)
※この情報は「1999~2002年」に執筆されたものです。
スイッチング素子
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/14 01:47 UTC 版)
「可変電圧可変周波数制御」の記事における「スイッチング素子」の解説
可変電圧可変周波数制御では、サイリスタやトランジスタといったスイッチング素子6個からなるブリッジ回路を用いて電流のON/OFFを繰り返し、キャリア三角波と基準電圧波形を比較してスイッチング素子のON/OFFを繰り返し、パルス波によるPWM(Pulse Width Modulation)方式により、位相差が120度の三相交流を作り出すことで、誘導電動機の固定子巻線に、6パターンの電力が供給される。電圧を可変するにはパルス波の幅を変化させ、周波数を変化させるにはスイッチング周期を変えることで行う。パルス波によって作られる制御波形には、1つのパルス波によって交流の正弦波に近い波形を作り出す2レベル制御波形、1つのパルス波の上にもう1つのパルス波を上積して2段階のパルス波にすることにより、波形をより正弦波に近い形を作り出す3レベル制御波形がある。 電気鉄道の主電動機駆動用のスイッチング素子としては初期には逆導通サイリスタ(RCT)が用いられていたが1990年代初頭からはスイッチング素子の駆動回路が簡素化できるゲートターンオフサイリスタ(GTOサイリスタ)が用いられるようになった。さらに1990年代終盤以降はスイッチング速度が速い絶縁ゲートバイポーラトランジスタ(IGBT)が主として用いられている。IGBTの採用により、より正弦波に近い出力が得られ、IGBTを2段直列に接続することで、電圧を2段階で加圧して、2段階のパルス波を発生させることにより、さらにより正弦波に近い出力を得ることができる3レベルインバータが開発され、電力変換器の低損失化や波形ひずみの軽減ができるようになった。また、キャリア周波数を人間にとって耳障りな周波数よりも高い領域にすることでインバータ装置や電動機の低騒音化が実現できるようになった。2010年代以降は、従来のケイ素(Si)より高耐圧でかつ高速動作も可能、高温下でも使用でき機器を小型化できる炭化ケイ素(SiC)を一部(ショットキーバリアダイオード)に使用したハイブリッド型ものや、さらにはSiCを全面的に用いたMOSFETが導入されつつある。SiCとはゲルマニウムやシリコンと同じ半導体の素材であって、当然SiC-IGBTなどもあり得る。従ってIGBTなどの半導体素子そのものを指すには不適切であるが、SiCというスイッチング素子があるかのような表現が広く用いられている。 SiC-MOSFETはSi-IGBTに比べゲート - ソース容量が低くなる ことからスイッチング損失が低く省電力である。損失が減って発熱が減ることで、回生ブレーキの使える範囲も広くなる。また、SiC-MOSFETはスイッチング速度が速く、時間当たり多くのオンオフが可能であり、これにより高速域でも高いパルスモードを使うことができ、モーターの高調波損失を低く抑えることが可能となる。 産業用や家電用のインバータに用いられることが多い素子であるバイポーラトランジスタは、電気鉄道用としては耐圧が不足する ことからほとんど使用されていない。実績を上げると、バイポーラトランジスタの一種であるパワートランジスタを利用した電車として、JR東日本901系A編成(後のJR東日本209系900番台)や同701系、JR西日本207系0番台が挙げられる。
※この「スイッチング素子」の解説は、「可変電圧可変周波数制御」の解説の一部です。
「スイッチング素子」を含む「可変電圧可変周波数制御」の記事については、「可変電圧可変周波数制御」の概要を参照ください。
スイッチング素子と同じ種類の言葉
- スイッチング素子のページへのリンク