無限次行列
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/01 07:43 UTC 版)
行または列の数を無限にした行列と呼べるようなものも考えることができるが、そのようなものを陽なかたちに書き記すことはできないので、行を添字付ける集合と列を添字付ける集合を用意して(添字集合は必ずしも自然数から成るものでなくてよい)、それらの各元に対して行列の成分が矛盾無く定義されるという方法で扱うことになる。このとき、和・差、スカラー倍、転置といった基本演算については問題なく定義されるが、行列の乗法に関してはその成分が無限和として与えられることになり、これは(適当な制約条件を抜きにしては)一般には定義されない。 R を任意の単位的環とすれば、右 R-加群としての M = ⨁ i ∈ I R {\displaystyle \textstyle M=\bigoplus _{i\in I}R} の自己準同型環は、I × I で添字付けられ、各列の非零成分の数が有限個であるような列有限行列の環 CFMI(R) に同型である。これと対応するものとして、左 R-加群としての M の自己準同型環を考えれば、同様に各行の非零成分の数が有限な行有限行列の環 RFMI(R) が得られる。 無限次元行列を線型写像を記述するのに用いるならば、次に述べるような理由から、その各列ベクトルが有限個の例外を除いて全ての成分が 0 となるものとならなければ無用である。A が適当な基底に関して線型写像 f: V → W を表現するものとすると、それは定義により、空間の任意のベクトルを基底ベクトルの(有限)線型結合として一意に表すことによって与えられるのであるから、従って(列)ベクトル v の成分 vi で非零となるものは有限個に限られる。また、A の各列は V の各基底ベクトルの f による像を W の基底に関して表したものとなっているから、これが意味を持つのはこれらの列ベクトルの非零成分が有限個である場合に限る。しかし一方で、A の行に関しては何の制約もない。事実、v の非零成分が有限個であるならば、積 Av はその各成分が見かけ上無限和の形で与えられるとしても、実際にはそれは非零の項が有限個しかないから、間違いなく決定することができる。さらに言えば、これは A の実質的に有限個の列の線型結合を成すことになり、また各列の非零成分は有限個だから結果として得られる和も非零成分が有限個になる。(通常は、行と列が同じ集合で添字付けられるような)与えられた型の二つの行列の積は矛盾無く定義できて、もとと同じ型を持ち、線型写像の合成に対応することも確認できる。 R がノルム環ならば、行または列に関する有限性条件を緩めることができる。すなわち、有限和の代わりに、そのノルムに関する絶対収束級数を考えればよい。例えば、列和が絶対収束列となるような行列の全体は環を成す。もちろん同様に、行和が絶対収束列となるような行列の全体も環を成す。 この文脈では、収束して連続的な問題を生じ、適当な制約条件を満たすような無限次行列はヒルベルト空間上の作用素を記述するものとして利用することができる。しかし、このようなやり方は行列としての陽な観点は曖昧になりがちであり、むしろその代わりに関数解析学の抽象的でより強力な手法が利用できる。
※この「無限次行列」の解説は、「行列」の解説の一部です。
「無限次行列」を含む「行列」の記事については、「行列」の概要を参照ください。
- 無限次行列のページへのリンク