推進力を得る仕組
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/08/12 15:07 UTC 版)
「ジェットエンジン」の記事における「推進力を得る仕組」の解説
ジェット推進もプロペラ推進と同様に空気の運動量を変化させたことによる反作用として機体を前進させる。ジェットエンジンあるいはプロペラ回転面を仮想的な円盤と仮定した、単純化したモデルを考えてみる。この円盤を通過する流体によって得られる推力 T は、その大きさが空気に与えられる運動量変化(力積)を単位時間当たりにしたものの大きさに等しく、またその向きは正反対となる。このため、当該円盤が吸いこんだ空気の質量(質量流量)を単位時間あたり ·m、円盤への流入空気速度(≒飛行速度)を V、円盤から十分離れた下流における気体の排出速度を V∞ とすると、推力 T は次のように書ける。 T = m ˙ ( V ∞ − V ) {\displaystyle T={\dot {m}}(V_{\infty }-V)} プロペラ推進では主に質量流量 ·m を大きくすることで推力を発生させる。すなわちプロペラを大型化したりブレード数を増やしたりして推力 T の増強を図る。これは、プロペラブレードと機速の合成速度が音速を超えると衝撃波が発生することで効率が著しく落ちるためである。その結果、通常のプロペラを装備した機体の速度は 700–800 km/h が上限となる。これに対し、上式で気流速度差 V∞ − V を大きくする(排気流を高速にする)ことでも T を増すことが可能であり、これに基づいて考案されたのがジェット推進である。ジェット推進でも回転物体(圧縮機やタービン)は存在するが、ダクトやブレードの形状を工夫することで衝撃波が抑えられるのでプロペラ推進の場合に生じかねない衝撃波による悪影響を防ぐことができ、実際にその発想がブレークスルーとなった。 ちなみに、機速 V が増加すると次第に V∞ − V が小さくなっていくが、その一方で流入する質量流量(単位時間あたりに流入する空気の質量)·m が増加するので、V∞ − V が極端に小さくない限り、互いの効果が相殺されて推力 T はほぼ一定に保たれる(この点は機速によらずほぼ一定出力 P を仮定するレシプロエンジンと異なる)。 なお、効率面で補足すると、ジェット推進では気体に与えられる運動エネルギーの割合が大きくなり、パワーロスは一般的に大きくなる。ここで、推進効率は、プロペラ推進ではプロペラ効率とも呼ばれ、設計の指針とされるパラメータである。このパラメータは特に出力が限られたレシプロ機では重要視されたが、ジェット推進で同様の効率を計算するとプロペラ推進の場合より低くなりがちである。ただし、V∞ − V が小さくなるほど気体に与えられる運動エネルギーの割合が低下して推進効率が増加するので、一般的にジェット機(特にターボジェット)は高速時のほうが燃費が良い。この観点では、それほど高速を必要としない用途には、純粋なターボジェットは排気速度が高すぎるともいえ、効率の改善を図るために、現代のほとんどの航空機用エンジンでは、ターボプロップやターボファンのようにプロペラやファンを採用し、排気速度を高めすぎずに質量流量 ·m を増大させる手法も併用されている。
※この「推進力を得る仕組」の解説は、「ジェットエンジン」の解説の一部です。
「推進力を得る仕組」を含む「ジェットエンジン」の記事については、「ジェットエンジン」の概要を参照ください。
- 推進力を得る仕組のページへのリンク