指向性の実現法
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/11 08:17 UTC 版)
正面を0とした音源の角度をθラジアン、感度をrとすると、 全指向性(無指向性)は r = 1 両指向性(双指向性、8の字指向性)は r = cos θ カーディオイド特性は r = (1 + cos θ )/2 と表される。ここから判る通り、カーディオイド特性は、全指向性と両指向性の二つの特性を加算したものである。 全指向性を実現するには、カプセルがある位置での音圧を検出すればよく、両指向性を実現するには、ダイヤフラム前後の圧力勾配ないしは媒体の速度を検出すればよい。カーディオイド特性を実現するためには、両者を兼ね備えればよく、カプセル後方に音響抵抗をもった通路を設け、ある程度ダイヤフラム後方の音圧もダイヤフラムに影響を与えるようにする。コンデンサマイクでは、背極の両面にダイヤフラムを用意し、両者の出力を電気的に合成する手法もとられる。 ハイパーカーディオイド等は、カーディオイド特性より両指向性成分を増やしたもので、側面からの音を拾いづらく、背面からの音は逆相になるので、ステージでのPAに有効である。 ガンマイク(もしくはショットガンマイク)は全指向性と両指向性の加算ではなく、音響管による干渉を利用して非常に鋭い指向性を実現している。正面からの音はそのままマイクエレメントに到達するが、側面からの音は、音響管側面に配されたスリットと減速材を通る音と、正面から回り込んで音響管を通る音に分かれ、双方の音が干渉し、エレメントに届かない。これを音響管方式または位相管方式などと呼ぶ。他に、音響管にふたつのマイクエレメントを組み込み、正面からの音はそのまま正面用マイクエレメントに到達する。音響管側面からの音は別のエレメントに到達し、正面用とは逆相の信号を出力する。同時に正面に回り込んだ音が正面用エレメントに到達し、順相の信号を出力する。これを合成すると信号がほぼ無くなる。これを二次音圧傾度型と呼ぶ。音響管方式は側面からの音を減速させるために高精度な加工が要求され、なるべく長い音響管が求められるが、二次音圧傾度型よりも鋭い指向性が得られる。二次音圧傾度型は高度な加工が必要とされず、短い音響管でも鋭い指向性が得られるため、低コストである。 また、放物面の焦点に全指向性マイクを置くと、遠くの音源に対する鋭い指向性と高い感度が得られる(集音器)。アレイ・マイクロホンは多数のマイクを並べてその出力を電気的に足し合わせて指向性を得るものがある。単純に足し合わせても高い指向性が得られるが、それぞれの信号を演算によって遅延器を通した効果を与えると、指向性の方向を変えられる。パッシブ・アレイ・レーダーの原理と同じである。また、それぞれのマイクの信号をいったんコンピューターに記録して、計算によって音源の方向(や距離)を割り出す事が騒音探査で応用されている。
※この「指向性の実現法」の解説は、「マイクロフォン」の解説の一部です。
「指向性の実現法」を含む「マイクロフォン」の記事については、「マイクロフォン」の概要を参照ください。
- 指向性の実現法のページへのリンク