平面格子
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/29 01:56 UTC 版)
二次元の格子は結晶構造制限定理に示される5種類のタイプがある。平行移動対称性の格子を使った文様はさらに多くの対称性を持つかもしれないが、格子自体の対称性より少なくはならない。文様の対称性の群が n-回回転を含むならば、n が偶数のとき n-回回転対称性、n が奇数のとき 2n-回回転対称性を、もとの格子は持つ。 以下では、格子の平面結晶群(文様群)としての記号を丸カッコ内に示した。 斜方格子、菱形格子、中心矩形格子、二等辺三角格子 (cmm): 均等な間隔で並べられた列の上に均等な間隔で点が並ぶ、かつ、各列は配置間隔の半分ずつ互い違いにずれている(対称的にジグザグ) 六角格子、正三角格子 (p6m) 正方格子 (p4m) 矩形格子、原始矩形格子 (pmm) 平行体格子、歪斜格子 (p2): (非対称なジグザグ) 与えられた格子の分類のため、ある一点から始めて次に最も近い点をとる。三つ目の点は、それが同一直線上にないなら、もとの二点との距離を考える。そして、それら二つの距離より距離が小さくなるような点たちのうち、この二つの距離のうち小さいほうが最小距離となるような点たちの中で、その二つの距離のうちの大きいほうが最小距離となるようなものを選ぶ(論理同値ではないが、今の場合は単に「その二つの距離のうちの大きいほうが最小距離となるようなものを選ぶ」と言っても結果としては同じである)。 格子の5つのタイプは、三角形が等辺(正)、直角二等辺、直角、二等辺および不等辺となる各場合に対応する。斜方格子では、最短距離は菱形の対角線か辺のいずれかである。つまり、最初の二点を結ぶ線分は二等辺三角形の等辺になるかもしれないしならないかもしれない。これは菱形の小さいほうの角が 60° より小さいのか、60° と 90° の間になるのかに依存する。 一般の場合は周期格子として知られる。ベクトル p および q が格子を生成するとき、p と q の代わりに p および p − q などを取っても同じ格子が生成される。平面では一般に、ad − bc = ±1 を満たす整数 a, b, c, d を考えるとき、ap + bq および cp + dq はもとと同じ格子を生成する。これは、p, q 自身が他の二つのベクトルの整数係数線型結合となることをも保証する。どの対 p, q も平行四辺形を定めるが、その面積は全て同じ値で、それらの対のベクトル積の大きさになる。平行四辺形をひとつ決めれば、それによって平面全体を埋め尽くせる。追加の対称性を考えないならば、この平行四辺形は基本平行四辺形である。 ベクトル p および q は複素数として表現することができる。大きさと向きの違いを除けば、このような対をそれらの商として表せる。幾何学的に表示すれば、格子上の二点を 0 および 1 とし、格子上の第三点の位置を考えるのである。同じ格子を生成するという意味での同値性はモジュラー群によって表される。 T : z ↦ z + 1 {\displaystyle T\colon z\mapsto z+1} が表すのは、同じグリッドの第三点を取り替えることであり、 S : z ↦ − 1 / z {\displaystyle S\colon z\mapsto -1/z} は三角形の基準とする辺 01 を別の辺に取り替えることを表す。これは一般に、格子のスケールを変えたり回転したりすることを含意する。
※この「平面格子」の解説は、「格子 (数学)」の解説の一部です。
「平面格子」を含む「格子 (数学)」の記事については、「格子 (数学)」の概要を参照ください。
- 平面格子のページへのリンク