同値性とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 活用形辞書 > 同値性の意味・解説 

同値性

読み方:どうちせい

名詞同値」に、接尾辞「性」がついたもの
日本語活用形辞書はプログラムで機械的に活用形や説明を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

同値

(同値性 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/02/22 05:29 UTC 版)

同値(どうち)または等価(とうか)とは、2つの命題が共にまたは共にのときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if(~のとき、かつそのときに限る)」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、=、EQ などが使われる。

真理値表

命題 P 命題 Q PQ

性質

基本的な性質

同値の基本的な性質は以下の通り。
必要」はこの項目へ転送されています。「必要」の語義については、ウィクショナリーの「必要」の項目をご覧ください。

二つの条件 pq に対して、「 p を満たすものは全て q も満たす 」 というとき、「 pq である為の十分条件である 」 あるいは 「 qp である為の必要条件である 」 という。

また、「 pq である為の十分条件であり、qp である為の十分条件である 」 というとき、「 pq である為の必要十分条件である 」 あるいは 「 pq とは同値である 」 という。

例 1

ある数が4の倍数である為には、その数は少なくとも偶数である必要がある。つまり、偶数であることは、4の倍数である為の必要条件である。ただし、偶数であっても、必ずしも4の倍数であるとは限らない。

また、ある数が4の倍数である為には、その数が8の倍数であれば十分である。つまり、8の倍数であることは、4の倍数である為の十分条件である。ただし、その数が8の倍数でなくとも、必ずしも4の倍数でないとは限らない。

他方、ある数が2の倍数である為には、その数は少なくとも偶数でなければならない。つまり、偶数であることは、2の倍数である為の必要条件である。また、その数が偶数であれば、その数は必ず2の倍数である。つまり、偶数であることは、2の倍数である為の十分条件である。すなわち、偶数であることは、2の倍数である為の必要十分条件であり、両者は同値である。

例 2

自然数変数 n についての条件 p(n), q(n) を次のように定める。

  • p(n): n > 10
  • q(n): 2n > 20

そのとき、p(n) は q(n) である為の必要十分条件である。すなわち、n > 10 は 2n > 20 である為の必要十分条件である。

例 3

実数変数 x についての条件 p(x), q(x) を次のように定める。

  • p(x): x > 0
  • q(x): x2 > 0

そのとき、p(x) は q(x) である為の十分条件である。しかし、−1 は q(x) を満たすが (x) を満たさないので、 「q(x) を満たす実数は全て p(x) を満たす」 とはいえない。よって、q(x) は p(x) である為の十分条件ではない。従って、p(x) は q(x) である為の必要十分条件ではない。

例 4

¬、⇔ を論理演算とし、命題変数 AB についての条件 p(A, B), q(A, B) を次のように定める。 ( ¬ は集合 { 真、偽 } から集合 { 真、偽 } への 1 つの写像である。⇔ は { 真、偽 }×{ 真、偽 } から { 真、偽 } への 1 つの写像である。AB は { 真、偽 } の元の変数である。)

  • p(A, B): ¬( AB ) = 真
  • q(A, B): ( ¬A )⇔B = 真

そのとき、p(A, B) は q(A, B) である為の必要十分条件である。すなわち、「¬( AB ) = 真」 は 「( ¬A )⇔B = 真」 である為の必要十分条件である。

関連項目

脚注

外部リンク


同値性

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/30 08:01 UTC 版)

被覆空間」の記事における「同値性」の解説

p1 : C1 → X と p2 : C2 → X が 2 つ被覆だとする。(p1, C1) と (p2, C2) は、ある同相写像 p21 : C2C1存在しp2 = p1op21 のとき、同値であると言う。これは同値関係である。被覆同値類は、共役類対応する。p21 が同相写像でなく被覆場合には、(p2, C2) は (p1, C1) を支配する(dominate)と言う。ここに、p2 = p1op21 である。

※この「同値性」の解説は、「被覆空間」の解説の一部です。
「同値性」を含む「被覆空間」の記事については、「被覆空間」の概要を参照ください。

ウィキペディア小見出し辞書の「同値性」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「同値性」の関連用語

同値性のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



同値性のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの同値 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの被覆空間 (改訂履歴)、一様空間 (改訂履歴)、有限生成アーベル群 (改訂履歴)、アーベル方程式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS