恒真式とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > デジタル大辞泉 > 恒真式の意味・解説 

こうしん‐しき【恒真式】

読み方:こうしんしき

トートロジー


恒真式

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/10/09 11:11 UTC 版)

恒真式(こうしんしき、トートロジー: tautology、ギリシャ語のταυτο「同じ」に由来)は、論理学の用語で「aであるならばaである(a → a)」「aである、または、aでない(a∨¬a)」のように、そこに含まれる命題変数の真理値、あるいは解釈に関わらず常にとなる論理式のことである。

恒真式の否定は、変数の値にかかわらず常にとなる式、すなわち矛盾である。

命題論理

命題論理において、命題を記号化したものが論理式であるが、論理式を構成している、最も単純な文に相当する要素式の真偽値の取り方に関係なく常に真(恒真)となる論理式が存在し、それらはトートロジーもしくは恒真式と呼ばれる[1]。真にも偽にもなりうる論理式を整合式(英: consistent well-formed formula)、恒に偽になる論理式を恒偽式もしくは矛盾式(英: contradictory well-formed formula)という。

述語論理

述語論理においては、トートロジーを考える事はないが、同様な概念を考える事ができる。論理式が、全ての解釈にたいして真になるとき、この論理式は恒真 (validity) で、妥当式 (valid wff) になる。少なくとも一つの解釈で論理式が真になるとき、この論理式は充足可能 (en:Satisfiability) で、充足可能式 (satisfiable wff) になる。全ての解釈で論理式が偽になるとき、この論理式は充足不可能で、矛盾式 (contradictory wff) になる[2][3]

定義と例

ここでは古典命題論理における恒真式の定義を述べる。



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「恒真式」の関連用語




4
トートロジー デジタル大辞泉
54% |||||




8
16% |||||



恒真式のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



恒真式のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの恒真式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS