たいすう‐らせん【対数×螺線】
対数螺旋
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/10/14 22:22 UTC 版)
![]() |
この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。
|
![]() |
![]() |
![]() |
![]() |
対数螺旋(たいすうらせん、英: logarithmic spiral)とは、自然界によく見られる螺旋の一種である。等角螺旋(とうかくらせん、英: equiangular spiral)、ベルヌーイの螺旋ともいい、「螺旋」の部分は螺線、渦巻線(うずまきせん)、匝線(そうせん)などとも書く。ヤコブ・ベルヌーイ(ジャック・ベルヌーイ)は、17世紀のスイスの数学者。
定義
極座標表示 (r, θ) で
本節では、対数螺旋の式は
軟体動物の殻、牛や羊の角、象の牙など、硬化する部位で、本体の成長に伴って次第に大きい部分を追加することで成長するような生物の器官において、対数螺旋が観察される[4]。その理由は、図のように相似で少しずつ大きくなる多角形が次々に形成されていくと、螺旋に近い形が描かれるからであると説明される。成長が連続的となるように各断片を小さくしていくと、その極限図形の境界線はちょうど対数螺旋を描く。ピッチは生物によって異なり、サザエでは約10度、アワビでは約30度、ハマグリでは約50度である[5]。ピッチが小さい場合は自分自身を巻くことができるので巻貝に見られ、ピッチが大きいものは大きく口を開けた形の二枚貝やアワビ・カサガイのようなものに見られる。
渦巻銀河の渦上腕は、ピッチがおよそ10度から40度の対数螺旋の形状に近い。太陽系を含む銀河である銀河系は、主要な渦状腕を4本持つとされ、そのピッチは比較的小さく、12度ほどと考えられている[6]。
なお、同じ渦巻きでもクモの網に見られる横糸の渦巻きはアルキメデスの螺旋である。巻き貝、あるいはそれ的なものでも、オオヘビガイのようにあまり太さを増さないままに巻数が多いものはこれに近くなる。
人工物における対数螺旋


アルキメデスの螺旋ほどではないが、デカルトやベルヌーイが数学的に解析するよりも前から、自然界に現れる対数螺旋は人々に認識されており、美術作品や建造物に用いられたといわれる。例えば、古代ギリシアの建築様式のひとつ、イオニア式の柱頭の特徴は、組になった渦巻の飾りであり、対数螺旋に近いものもある[7]。また、ジュゼッペ・モーモの設計したバチカン美術館の二重螺旋階段は、真上から見ると対数螺旋である[8]。
自由渦が対数螺旋を描くこと、非粘性流体の軌跡は対数螺旋を描くため[9]、水力発電におけるフランシス水車などの水車原動機や渦巻きポンプのディフューザーおよびケーシングの設計には古くから対数螺旋曲線が用いられている[9][10]。比較的低圧のシロッコファンの羽根およびケーシングも対数螺旋であるが[11]コストアップになるため超小型ファンではケーシングを代数螺旋や円筒で代用したものも少なくなかった。しかしながら家庭用ゲーム機の熱容量向上に伴いあえてコスト高となる対数螺旋ケーシングの採用に踏み切る例が出てきた[13]。
中心から伸ばした半直線と対数螺旋が成す角は一定であることを「はさみ」に応用した製品も上市された。文房具メーカーのPLUSから刃の開き角度を常に30°を保つよう片方の刃を対数螺旋曲線刃[14]にしたはさみが発売されたことがある[15]。
黄金螺旋

黄金螺旋(golden spiral) とは、黄金比 φ に関連した対数螺旋の一種であり、
アルブレヒト・デューラーは、1525年の著書『測定法教則』(Underweysung der Messung mit dem Zirckel und Richtscheyt) において、アルキメデスの螺旋やその変形の作図法について論じた後、次のように述べている。
中心に向かいながら同時に上下にも旋回する、内にも外にも無限に進む線が考えられる。この線は無限の大小の故に人の手では引かれない。その始まりと終わりがなく、見い出されず、ただ頭の中で理解されるだけである。—下村耕史訳『「測定法教則」注解』 p. 36
まだ曲線を式で表す方法が知られていなかった時代であり、曖昧な表現ではあるが、これは対数螺旋について述べているものと解釈されている[18]。
対数螺旋を初めて数学的に考察したのは、解析幾何学の祖、ルネ・デカルトである。螺旋の進行方向が中心に対して常に一定の角であることに注目し、この螺旋を等角螺旋と呼んだ[2]。エヴァンジェリスタ・トリチェリは、対数螺旋上の一点から中心までの道のりが有限であることを示した[19]。
ヤコブ・ベルヌーイは、対数螺旋の伸開線および縮閉線は自分自身に一致することを示した。彼は、この螺旋の「拡大しても変わらない」などの性質に魅了され、ラテン語で Spira mirabilis (驚異の螺旋)と呼んだ。ベルヌーイの望みは Eadem mutata resurgo (変化しても同じように生まれ変わる)の語句とともに、墓石にこの螺旋を彫ってもらうことであったが、誤ってアルキメデスの螺旋が彫られてしまっている[20]。
脚注
- ^ 岩波数学辞典第4版 100.G
- ^ a b リヴィオ、p. 149
- ^ 上村、p. 125
- ^ 『世界大百科事典』平凡社、1988年、螺旋の項
- ^ 上村、p. 115
- ^ Y. M. Georgelin and Y. P. Georgelin, The spiral structure of our Galaxy determined from H II regions, Astronomy and Astrophysics, vol. 49, no. 1, May 1976, p. 57-79. abstract
- ^ アータレイ、p. 83
- ^ アータレイ、p. 110
- ^ a b 桜井照男「[1]」『日立評論』第53巻第12号、1971年12月、2023年11月15日閲覧。
- ^ 黒川淳一、伊丹孝之、永原英明「[2]」『日本機械学会論文集』、日本機械学会、1986年8月25日、2023年11月15日閲覧。
- ^ "ファンケースの設計". 有限会社サンライズ. 2022年11月29日. 2023年11月15日閲覧。 ただしこれに限定されない。
- ^ 米田聡 (2014年1月21日). "国内発売まであと約1か月のPS4,筐体設計の秘密が明らかに". 4Gamer.net. 2014年1月22日時点のオリジナルよりアーカイブ。2023年11月15日閲覧。
- ^ PlayStation 3後期型やPlayStation 4の内部冷却機構に取り入れられ、導入前と比較して熱処理特性を大幅に改善した[12]。
- ^ "ベルヌーイカーブ刃とは!?". PLUS. 2023年11月15日閲覧。
- ^ "PLUS フィットカットカーブ". PLUS. 2023年11月15日閲覧。なお本品は終売している。
- ^ 上村、p.129
- ^ Zell-Ravenheart, p. 274
- ^ 『「測定法教則」注解』 p. 227, p. 300
- ^ マオール、p. 164
- ^ マオール、p. 170
参考文献
- 日本数学会編『岩波数学辞典』第4版、岩波書店、2007年 ISBN 978-4000803090
- マリオ・リヴィオ著、斉藤隆央訳『黄金比はすべてを美しくするか』早川書房、2005年 ISBN 978-4152086914
- 上村文隆『生き物たちのエレガントな数学』技術評論社、2007年 ISBN 978-4774132112
- ビューレント・アータレイ著、高木隆司訳、佐柳信男著『モナ・リザと数学』化学同人、2006年 ISBN 978-4759810585
- Oberon Zell-Ravenheart, Grimoire for the Apprentice Wizard, New Page Books, 2004、ISBN 978-1564147110、グーグルブックスにおける検索結果
- アルブレヒト・デューラー著、下村耕史編訳『「測定法教則」注解』中央公論美術出版、2008年、ISBN 978-4805505786
- エリ・マオール著、伊理由美訳『不思議な数eの物語』岩波書店、1999年 ISBN 978-4000059435
関連項目
外部リンク
- 『対数螺旋の長さと面積』 - 高校数学の美しい物語
- Weisstein, Eric W. "Logarithmic Spiral". mathworld.wolfram.com (英語).
- Weisstein, Eric W. "Golden Spiral". mathworld.wolfram.com (英語).
- 上村文隆、はまぐりの数学
- Spiral - ウェイバックマシン(2003年10月26日アーカイブ分) - 対数螺旋のピッチを調べることができるフリーウェア
- NASA, Astronomy Picture of the Day - ハリケーン・イザベルと子持ち銀河の写真
- NASA, Astronomy Picture of the Day - 平成20年台風第2号と回転花火銀河の写真
- Jim Wilson, Spira Mirabilis, University of Georgia
対数螺旋
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/04/19 04:53 UTC 版)
対数螺旋(等角螺旋)は自己相似かつスケール不変である。 log r ( θ ) a = 1 λ log r ( λ θ ) a {\displaystyle \log {\frac {r(\theta )}{a}}={\frac {1}{\lambda }}\log {\frac {r(\lambda \theta )}{a}}}
※この「対数螺旋」の解説は、「自己相似」の解説の一部です。
「対数螺旋」を含む「自己相似」の記事については、「自己相似」の概要を参照ください。
- 対数螺旋のページへのリンク