同期式と非同期式
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/05/07 08:27 UTC 版)
「クロック同期設計」の記事における「同期式と非同期式」の解説
論理レベルで遅延を考慮しない場合は発生しないが、遅延のある実回路では、「ハザード」や「グリッチ」と呼ばれる信号のバタツキが発生する場合がある。例えば、カウンタ回路で7から8へと桁上がりする場合、"0111"から"1000"へと変化する間、先に下位桁だけが変化して上位桁が下位桁からの桁上げ信号を処理している間は正しい出力に変化しないために伝播遅延で生じるしばらくの間だけ"0110"や"0100"、"0000"となる事がある。 非同期式の回路で、ハザードやグリッチを放置して、例えば全桁が0となる度に何かの動作を命じていれば、4や8、16といった桁上がり動作でハザードが生じる度に思わぬ誤動作を起こす危険がある。 同期式では、多くの場合、内部のフリップ・フロップ回路がマスター・スレーブ構成のように前後に2重となっていて、出力だけを見ればクロック入力に合わせて前段の結果を後段に伝える動作だけを整然と行なっている。前段の側ではクロックの遷移直後は入力信号にハザードが現れることを考慮して外部入力が安定する頃合である(1相式クロックの場合)クロックの逆相で情報を前段に取り込んでおく。 同期式では少しでもクロックのタイミングに遅れた入力はその時点で意味を失うが、非同期式では入力の変化は伝播遅延による波を形づくって上流から下流へ伝わって行くだけである。 同期式の問題点 クロック信号の分配に細心の注意が求められる。クロック信号が伝搬遅延したりエッジがなまっていたりすると、確実な動作が期待出来ない。 多数のゲートが同時に動作する。高速変化にも追従して安定した電源を各ゲートへ供給しないと、電源電圧が降下したり、グランドレベルが不安定となりスレッシュホールド・レベルが変化して、動作速度も落ちる。 不要電磁放射の尖頭電力が高まる。 回路規模が大きくなる傾向がある。電力消費と発熱が増す。 ダイが大きくなり、コストが増す。 遅延そのものが増す。 近年はクロック非同期設計の利点が注目されつつある。近年のCAD技術の進歩および回路シミュレーション環境の変化によりクロック非同期設計をデジタル論理回路に適用しても設計、検証が十分に行える可能性が出てきた。クロック非同期設計には、消費電力、不要な電磁波の強度、回路ごとに最適な動作速度の選択、などの利点があるため、多くの試作検討が行われている。 この項目は、電子工学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(Portal:エレクトロニクス)。
※この「同期式と非同期式」の解説は、「クロック同期設計」の解説の一部です。
「同期式と非同期式」を含む「クロック同期設計」の記事については、「クロック同期設計」の概要を参照ください。
- 同期式と非同期式のページへのリンク