公理の直観的・歴史的な妥当性
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/12/11 22:53 UTC 版)
「公理」の記事における「公理の直観的・歴史的な妥当性」の解説
公理系は記号で書かれた論理式の集まりなので、理屈の上では現実世界の観察に基づかない非現実的な公理系のもとに全く無意味な数学理論の体系を構築しても良いことになるが、多くの数学者は現実世界の観察に基づかない非現実的な公理系ではなく、現実世界の観察に基づく公理系を研究の対象にしている。 だがどういう公理系が「直観的歴史的妥当性がある」ものであるのかについては必ずしも数学者全員の合意が得られているとは限らない。例えば直観主義論理の立場では排中律は認められない。排中律とは任意の命題Aに対しA自身かAの否定のどちらかが成立する、という要請で一つのモデルの中では命題の真偽は確定的なものであるという立場の推論規則である。通常の数学では排中律を認めるが、直観主義論理の立場に立った研究者たちは命題の真偽について実際に証明できる手続きが与えられることを要請する。 同様に妥当性が問題になるタイプの公理に集合論の選択公理など無限を取り扱ったものがある。これは「無限個の(空でない)集合の列から一個ずつ元を選ぶことができる」という趣旨の公理である。選択公理は(集合論のそれ以外の公理が矛盾していない限り)矛盾を導かず(ゲーデル)、さらに選択公理の否定からも矛盾が導かれない(コーヘン)ことが知られている。 選択公理を認めることで様々な強力な定理(帰納的順序集合における極大元の存在、ベクトル空間の基底の存在、代数的閉包の存在、従順群上の不変汎関数の存在など)が証明できる。いっぽうで選択公理を認めてしまうと一見直観に反していて逆理であるかのような定理(バナッハ・タルスキの逆理、非可測集合の存在)が成立してしまう。ほとんどの数学者は選択公理を認めた数学体系を研究しているが、おもに数学基礎論の研究において、選択公理を認めない数学の可能性を追求している数学者もいる。
※この「公理の直観的・歴史的な妥当性」の解説は、「公理」の解説の一部です。
「公理の直観的・歴史的な妥当性」を含む「公理」の記事については、「公理」の概要を参照ください。
- 公理の直観的・歴史的な妥当性のページへのリンク