公理化を通して
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/01/09 22:47 UTC 版)
「数学における統一理論」の記事における「公理化を通して」の解説
20世紀初頭、数学の大部分は、有用な公理の集合を正確に述べ、それらの帰結について研究するという方法によって扱われるようになっていく。従って例えば、四元数学会によって考えられたような「超複素数」の研究は、環論の分野としての公理的な立場(この場合、複素数体上の特定の結合多元環の意味)に基づくものであった。この文脈では、剰余環の概念が最も強力な統一指針の一つになる。 それまでは応用面での要求のために数学の多くがアルゴリズム(あるいはアルゴリズム的なものに近い過程)として教えられていたという意味で、これは方法論の全面的な変更である。算術は未だそのような方法で教えられている。公理的な手法は、数学の独立した分野としての数理論理学の発展と並行するものであった。1930年頃には、記号論理学そのものが数学に十分に含まれるものとなった。 殆どの場合、研究の下にある数学的対象は(非標準的にではあるが)集合として、より厳密に言えば加法演算のような付加的な構造を備えた集合として、定義される。現在では、集合論は数学的な話題を展開するための「共通語」としての役割を果たしている。
※この「公理化を通して」の解説は、「数学における統一理論」の解説の一部です。
「公理化を通して」を含む「数学における統一理論」の記事については、「数学における統一理論」の概要を参照ください。
- 公理化を通してのページへのリンク