ランチェスターの式の応用
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/16 01:10 UTC 版)
「ランチェスターの法則」の記事における「ランチェスターの式の応用」の解説
ランチェスターの研究成果を踏まえた数学的な研究が何人かの研究者によって行なわれている。そのうちの一人は海戦術理論の研究者であるブラッドレー・フィスクである。彼は艦隊の火力を集中することの定量的な有効性を分析することに功績がある。劣勢にある艦隊の戦闘力の減少率は算術級数的ではなく幾何級数的であることを示し、二つの艦隊の戦力の格差が広がる過程を方程式として描き出した。フィスクの研究成果である方程式はランチェスターの第2法則の要素を含みながらも、より操作しやすい異なる方程式を提唱した。 またオシポフはランチェスターと同じ結論にほぼ同時期に到達しており、1915年に一連の論文でオシポフ方程式を提唱した。オシポフはフィスクやランチェスターの理論を参照することができなかったために、各時点において対抗している両軍の戦力の損耗を表現するための累乗の指数を用いた関数を使用することを独自に考案した。さらに、歴史的な事実を統計学の手法を応用して分析することを始めている。 またルイス・フライ・リチャードソンは第二次世界大戦中にランチェスター方程式の軍事的な価値に気づき、その研究を踏まえながら自身の数学的モデルを構築した。リチャードソンの研究業績は主に軍拡競争の現象を説明するための微分方程式を使用し、二国間関係の安定性を数学的に分析することが可能であることを示したことである。 第二次世界大戦でランチェスターの理論に対する関心が高まると、軍事問題に携わる数学者が本格的にランチェスター方程式を発展させようと努めた。1943年から1951年にかけてクープマン、モース、キムボールはアメリカ海軍の作戦評価集団(Operations Evaluation Group, OEG)に勤務して研究業績(オペレーションズ・リサーチ)を発表する。クープマンはランチェスター方程式に新たに戦闘の機会という確率的要素と戦争における工業生産率の要素を導入(「ランチェスター戦略方程式」=クープマンモデルともいわれる)した。
※この「ランチェスターの式の応用」の解説は、「ランチェスターの法則」の解説の一部です。
「ランチェスターの式の応用」を含む「ランチェスターの法則」の記事については、「ランチェスターの法則」の概要を参照ください。
- ランチェスターの式の応用のページへのリンク