マグマ_(代数学)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > マグマ_(代数学)の意味・解説 

マグマ (数学)

(マグマ_(代数学) から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/12 04:53 UTC 版)

抽象代数学におけるマグマ: magma)または亜群(あぐん、groupoid)とは、一つの集合と、その集合上に閉じて定義された一つの二項演算で構成される組(代数的構造)である。

このような構造に「マグマ」という呼称を導入したのはニコラ・ブルバキである。旧来はオイステイン・オア英語版による用語で亜群groupoid)と呼ばれていたもので、現在でもしばしばそのように呼ばれる。(ただし、圏論において、「亜群英語版groupoid)」と呼ばれる全く別の概念もある。)

群に似た構造
全域性 結合性 単位的 可逆的
Yes Yes Yes Yes
モノイド Yes Yes Yes No
半群 Yes Yes No No
ループ Yes No Yes Yes
準群 Yes No No Yes
マグマ Yes No No No
亜群英語版 No Yes Yes Yes
No Yes Yes No


定義

マグマ (M, μ) とは、集合 M と、M 上での閉性M の元 a, b のどの組み合わせについても、μ(a, b) がまた M の元であること)を満たす二項演算 μ を、組として考えたものである。二項演算 μ は、集合 M 上での閉性のほかに公理を課されない。

演算が明らかで紛れのおそれが無いときは、演算の記号を落として台集合の記号のみによってマグマ M などとも表す。しばしば二項演算 μ はマグマ M における乗法とも呼ばれ、このときの演算結果 μ(a, b) は ab とのという[* 1]。また、誤解のおそれが無いならば積 μ(a, b) は演算記号を省略してしばしば ab と書かれる。演算記号が省略されている場合に、マグマが台集合と演算の対であることを明示するにはプレースホルダを用いて (M, ·) のように書かれる。

演算 μ が偏演算(局所演算、部分演算)ならば、(M, μ) を局所マグマ(偏マグマ)という[* 2]

部分マグマ

マグマ (M, μ) の台集合 M の部分集合 Nμ とマグマを成すならば、マグマ (N, μ) を (M, μ) の部分マグマsubmagma)という。

マグマ準同型

ふたつのマグマ (M, μ), (N, ν) の間の準同型写像magma morphism/homomorphism)またはマグマ準同型とは写像 f: MN であって、

自由対象
集合 S から任意のマグマ M への写像 f: SM が与えられたとき、fS 上の自由マグマ FS から M へのマグマ準同型
マグマから群へ:
各頂点は
  • マグマ (magma)
  • 準群 (quasigroup)
  • 半群 (semigroup)
  • ループ (loop)
  • モノイド (monoid)
  • 群 (group)
各矢印は
  • 可除性 (divisibility)
  • 結合性 (associativity)
  • 単位元をもつ (identity)
  • 可逆性 (invertibility)
可除性も可逆性も消約性の成立を含意することに注意。

一般には、マグマをそのままマグマとして調べるということはまずあり得ず、代わりに(部分的なクラスに分けるために)マグマの二項演算に適当な公理を課した、いくつかの別な種類の代数系として調べることになる。よく知られたクラスの、特別な名前が付いている代数系としては

といったようなものを挙げることができる。もちろん、特別な呼び方はなくとも、可換マグマや可換モノイドといったような代数系のクラスもしばしば扱われる。

更なる定義

マグマ M が、[* 3]

  • 単位的unital)であるとは、それが単位元を持つときにいう。
  • 中可換medial)であるとは、恒等式 (xy)(uz) = (xu)(yz) を満たすときにいう。
  • 左半中可換left semimedial)であるとは、恒等式 (xx)(yz) = (xy)(xz) を満たすときにいう。
  • 右半中可換right semimedial)であるとは、恒等式 (yz)(xx) = (yx)(zx) が満たされるときにいう。
  • 半中可換semimedial)であるとは、左中可換かつ右中可換であるときにいう。
  • 左分配的left distributive)であるとは、恒等式 x(yz) = (xy)(xz) を満たすときにいう。
  • 右分配的right distributive)であるとは、恒等式 (yz)x = (yx)(zx) が満足されるときにいう。
  • 両側分配的autodistributive)であるとは、左分配的かつ右分配的であるときにいう。
  • 可換commutative)であるとは、xy = yx なる恒等式が成立するときにいう。
  • 冪等idempotent)であるとは、xx = x が恒等的に成り立つときに言う。
  • 単冪unipotent)であるとは、恒等的に xx = yy となるときにいう。
  • 零冪zeropotent)であるとは、恒等式 (xx)y = y(xx) = xx が成立するときにいう。
  • 左交代的left-alternative)であるとは、恒等式 (xx)y = x(xy) が成立するときにいう。
  • 右交代的right-alternative)であるとは、恒等式 y(xx) = (yx)x が成立するときにいう。
  • 交代的英語版alternative)であるとは、左交代的かつ右交代的であるときにいう。
  • 冪結合的power-associative)であるとは、その任意の元の生成する部分マグマが必ず結合的となるときにいう。
  • 左消約的left-cancellative)であるとは、等式 xy = xz から常に y = z が帰結できるときにいう。
  • 右消約的right-cancellative)であるとは、等式 yx = zx から y = z が常に帰結されるときにいう。
  • 消約的cancellative)であるとは、それが左消約的かつ右消約的となるときにいう。
  • 半群semigroup)または結合的associative)であるとは、x(yz) = (xy)z が恒等式であるときにいう。
  • 左零付き半群(semigroup with left zeros)であるとは、x = xy を恒等的に満足する元 x が存在するときにいう。
  • 右零付き半群(semigroup with right zeros)であるとは、x = yx が恒等的に成立するような元 x がとれるときにいう。
  • 零半群 semigroup with zero multiplication, null semigroup であるとは、恒等式 xy = uv を満たすときにいう。
  • left unar であるとは、恒等式 xy = xz が満足されるときにいう。
  • right unar であるとは、yx = zx なる恒等式が成立するときにいう。
  • trimedial であるとは、その任意の三元(必ずしも相異なる必要はない)が生成する部分マグマが中可換であるときにいう。
  • entropic であるとは、ある中可換消約マグマの準同型像となっているときにいう。

一般化

多項群英語版を見よ。

関連項目

注記

  1. ^ 数の乗法およびの用語を流用したものではあるが、一般にはそれらの概念と直接的な関係は無い。
  2. ^ 写像ではなく、定義域と始域が一致しない部分写像(partial function)となっているような演算を偏演算(partial operation)という。"partial" には「部分」「偏」などの訳語が当てられることが多いが、これを「部分マグマ」とよぶと "submagma" と紛らわしい。(田村 1972) では「偏亜群」等
  3. ^ 各訳語はおおかた (田村 1972) に従った。

参考文献

外部リンク


「マグマ (代数学)」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「マグマ_(代数学)」の関連用語

マグマ_(代数学)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



マグマ_(代数学)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのマグマ (数学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS