ハミルトニアン系とリウヴィル可積分性
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/26 02:50 UTC 版)
「可積分系」の記事における「ハミルトニアン系とリウヴィル可積分性」の解説
ハミルトン力学系の特別な設定では、リウヴィル (Joseph Liouville) の意味で可積分性の考え方がある。リウヴィル可積分性 (Liouville integrability) の意味とは、葉層不変量に付随するハミルトンのベクトル場が接空間をはるような相空間の正規な葉層が存在することを言う。言い換えると、ポアソン可換な(つまり、系のハミルトニアンとポアソン括弧が互に可換であり、従って互いに掛け合うと消滅するものが存在する相空間の上の函数である)不変量の最大集合が存在することを言う。 有限次元では、相空間がシンプレクティックな場合(すなわち、ポアソン代数の中心が定数のみからなる)、偶数次元 2n と(ハミルトニアン自身を含む)べき零なポアソン可換不変部分の最大数が n となっているはずである。葉層の葉は、シンプレクティック形式の観点から全等方(totally isotropic)であり、そのような最大で等方な葉層をラグラジアン部分多様体と呼ばれる。全ての主動 (autonomous) なハミルトン系(つまり、ハミルトニアンもポアソン括弧も明確には時間依存ではないような系であり、ハミルトニアン自体がフローに沿ったエネルギーを持っている)は少なくとも一つは不変量を持っている。もしエネルギーレベルがコンパクトであれば、ラグラジアン葉層の葉はトーラスとなり、この葉の上の自然な線型座標は「角度」変数と呼ばれる。標準的な 1-形式のサイクルを作用変数と呼び、結果として得られる標準座標を作用・角変数 (action-angle variables) と呼ぶ(以下を参照)。 超可積分性(英語版) (superintegrability) と最大超可積分性の考え方の間の差異のように、リウヴィルの意味の完全可積分性と部分的可積分性の間にも差異がある。本質的には、これらの差異は葉層の葉の次元に対応している。不変量と可換な独立したポアソンの括弧の数が最大よりも小さなとき(しかし、自律係の場合は 1 よりも大きい)、この系を部分的可積分という。さらに汎函数として独立な不変量がポアソンの括弧と交換可能な最大数を超えているとき、従って葉層構造の不変量の葉の次元が n よりも小さいとき、超可積分という。1 次元の正規な葉(曲線)があると、この系は最大超可積分 (maximally superintegrable) という。
※この「ハミルトニアン系とリウヴィル可積分性」の解説は、「可積分系」の解説の一部です。
「ハミルトニアン系とリウヴィル可積分性」を含む「可積分系」の記事については、「可積分系」の概要を参照ください。
- ハミルトニアン系とリウヴィル可積分性のページへのリンク