ガンマ線観測
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/09/16 14:07 UTC 版)
フェルミガンマ線宇宙望遠鏡は、搭載するガンマ線バーストモニター(GBM)によって、LIGOでの重力波検出の0.4秒後からエネルギー50keVの弱いガンマ線バーストを検出した。ガンマ線バーストの位置は、LIGOの観測から推測される重力波源の位置と誤差の範囲内で一致した。フェルミチームは、同じ位置に同じタイミングで重力波源とは全く無関係のガンマ線バーストあるいはノイズが現れる確率を0.22%と推定している。しかし、ブラックホール合体でガンマ線バーストが発生することは想定されておらず、別のガンマ線観測衛星インテグラルで観測されたガンマ線・硬X線のエネルギーが重力波放射の100万分の1にも満たなかったことから、重力波源が観測者の方向に向かって強烈な放射が放たれる通常のガンマ線バーストである可能性はほぼ否定された。もしフェルミが観測した信号が実際に天体由来のものであったとしたら、インテグラルでは15シグマのレベルで検出されるはずであった。イタリアのエックス線観測衛星AGILEでも、この重力波源に付随するガンマ線放射はとらえられていない。 2016年6月に独立な研究グループが、ガンマ線突発天体のスペクトルの推定にあたって異なる統計的アプローチを行った検証結果を発表した。それによれば、フェルミのデータはガンマ線バーストの証拠とは言えず、背景のノイズか地球由来のガンマ線であるとしている。しかしこのグループはフェルミのデータを誤った方法で解析しており、当初の結果が覆るものではない、という反論もある。 重力波イベントGW150914のもととなったと考えられるブラックホールどうしの合体では、それぞれのブラックホールがまとうガスの量が十分でないため、ガンマ線バーストは発生しないと考えられている。アメリカの物理学者Avi Leobは、大質量星が高速で自転していた場合、その崩壊時に生み出される遠心力によって星は高速回転する棒状の構造を作り、その後鉄アレイ状にふたつの物体がつながった形状となった後にそれぞれがブラックホールとなり(ブラックホール連星)、ガンマ線バーストが生じるという理論を構築した。Loebは、ガンマ線バーストが星を横切るのにかかる時間は重力波が横切る時間より0.4秒長くかかると見積もっている。
※この「ガンマ線観測」の解説は、「重力波の初検出」の解説の一部です。
「ガンマ線観測」を含む「重力波の初検出」の記事については、「重力波の初検出」の概要を参照ください。
- ガンマ線観測のページへのリンク