アインシュタインの縮約記法
アインシュタインの縮約記法(アインシュタインのしゅくやくきほう、英: Einstein summation convention)またはアインシュタインの記法(アインシュタインのきほう、英: Einstein notation)、アインシュタインの規約(アインシュタインのきやく、英: Einstein convention)または総和規約[1]は、添字 (index) の和の記法であり、同じ項で添字が重なる場合はその添字について和を取るというルールである。この重なる指標を擬標(またはダミーの添字、dummy index)、重ならない指標を自由標(またはフリーの添字、free index)と呼ぶ。
一般相対性理論、量子力学、連続体力学、有限要素法などで重宝する。この記法が有用なのは、上下に同じ添字がついているときその添字に対する和(縮約)は座標変換によらないという点である[2]。
アインシュタインが 1916 年に用いた[3]。アインシュタインはこの記法を自分の「数学における最大の発見」と(冗談めかして)言ったという[4]。
例
4 次元空間におけるベクトル aμ と bμ (μ = 1, 2, 3, 4) の内積を記すときには、aμ bμ と記述される。これは、具体的に書けば
この項目は、自然科学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(Portal:自然科学)。
- アインシュタインの和の規約のページへのリンク