Lab色空間



Lab色空間(エル・エー・ビーいろくうかん、英: Lab color space)は補色空間の一種で、明度を意味する次元 L と補色次元の a および b を持ち、CIE XYZ 色空間の座標を非線形に圧縮したものに基づいている。
Hunter 1948 L, a, b 色空間の座標軸は L、a、b である[1][2]。しかし最近では CIE 1976 (L*, a*, b*) 色空間の非公式な略称としても Lab が使われている(こちらは CIELABとも呼ばれ、座標軸は実際には L*、a*、b* である)。このため、単に Lab と記述すると若干あいまいとなる。これらの色空間は用途は相互に関連しているが、実装は異なる。
どちらの色空間もマスターの色空間である CIE 1931 XYZ 色空間から派生したもので、CIE 1931 XYZ 色空間はどの分光強度分布が同じ色として知覚されるかを予測できるが、知覚的均等性はなかった[3]。マンセル表色系に強く影響され、どちらの"Lab"色空間もXYZ空間から単純な式で変換できるが、XYZよりも知覚的に均等になっている[4]。「知覚的に均等」とは、色の値が同じだけ変化したとき、人間がそれを見たときに感じられる変化も等しいことを意味する。色を有限精度の値で表すとき、これによって色合いの再現性が向上する。どちらのLab色空間も、ホワイトポイントの変換前のXYZデータについて相対的である。Lab値は絶対的な色を定義するものではなく、あくまでもホワイトポイントを指定した上での相対的値である。実際にはホワイトポイントには何らかの標準を仮定し、明確に示さないことが多い。例えば、絶対的値を示すレンダリングインテントである ICC L*a*b* は標準の光D50をホワイトポイントとした相対値であり、他のレンダリングインテントとは相対的関係にある[5]。
CIELABにおける明度は相対輝度の立方根を使って計算され、Hunter Lab では平方根を使う(近似方法がやや古い)[6]。既存の Hunter Lab 値と比較するなどの用途以外では、一般にCIELABの使用が推奨されている[6]。
Labの利点
RGBやCMYKとは異なり、Lab色空間は人間の視覚を近似するよう設計されている。知覚的均等性を重視しており、L成分値は人間の明度の知覚と極めて近い。したがって、カラーバランス調整を正確に行うために出力曲線を a および b の成分で表現したり、コントラストの調整のためにL成分を使ったりといった利用が可能である。RGBやCMYKは人間の知覚よりも出力機器の都合が優先されており、これらの変換は編集ソフトの適切なブレンドモードの補助が必須である。
Lab色空間はコンピュータディスプレイやプリンタや人間の知覚よりも色域が広く、Lab色空間で表現したビットマップ画像は同等精度のRGBやCMYKのビットマップ画像よりもピクセル当たりのデータ量が多くなる。1990年代、コンピュータのハードウェアやソフトウェアはチャネル当たり8ビットのビットマップ画像しか格納・操作できず、RGB画像とLabの相互変換は損失の多い操作だった。現在ではチャネル当たり16ビットが当たり前となり、そのような問題は生じない。
さらに、Lab色空間内の「色」の大部分は人間の視覚の色域外であり、純粋に架空の存在である。それらの「色」は実世界では再現することができない。しかし画像編集ソフトなどに組み込まれているカラーマネジメントソフトは、そのような色であっても色域内の最も近い色に近似したり、明度・彩度・色相を変えたりできる。Dan Margulis は、このような架空の色へのアクセスは画像の操作の途中段階で必要になると主張している[7]。
様々な "Lab"
"Lab"という略称を使っているソフトウェアなどの例を以下に示す。
- Adobe Photoshop での "Labモード" は CIELAB D50 を意味している[7][8]。
- ICCプロファイルにおいて、プロファイル接続空間として使われる "Lab色空間" は CIELAB D50 を意味している[5]。
- TIFFフォーマットでは、CIELAB色空間が使われていると思われる[9]。
- PDF文書では、"Lab色空間" は CIELAB を意味する[10][11]。
CIE 1976 (L*, a*, b*) 色空間 (CIELAB)
CIE L*a*b* (CIELAB) はほぼ完全な色空間であり、国際照明委員会 (CIE) が策定した。人間の目で見える全ての色を記述でき、機器固有モデルの基準として利用できるように意図したものである。
CIELABの3つの座標は、色の明度(L* = 0 は黒、L* = 100 は白の拡散色で、白の反射色はさらに高い)、赤/マゼンタと緑の間の位置(a*、負の値は緑寄りで、正の値はマゼンタ寄り)、黄色と青の間の位置(b*、負の値は青寄り、正の値は黄色寄り)に対応している。後述する Hunter Lab との違いを明確化するため、各座標にはアスタリスク (*) が付いている。
L*a*b*モデルは3次元モデルであり、3次元空間でないと正しく表現できない[12]。2次元で描いたものは、色立体を特定の明度で輪切りにした色度図である。このモデルでの完全な色域を視覚的に表現したものは決して正確とは言えないということを認識することが重要である。それは単に概念を理解する補助でしかない。
赤/緑と黄/青の補色チャネルは錐体細胞の反応(の推定値)の差異として計算されるため、CIELABは Chromatic Value 色空間である。
関連する色空間として CIE 1976 (L*, u*, v*) 色空間がある。これは L* は L*a*b* と同じで、Chromatic Value 成分は別の表現を使っている。CIELUVを円筒状に表現する場合もあり(CIELCH)、その場合は Chromatic Value 成分が彩度と色相に分けられる。
CIELABやCIELUV以降も、CIEは様々な色に関する現象をモデルに採り入れ、カラーモデルを改良し発展させている。CIELABは色の見えモデルとして設計されたわけではないが[13]、結果的に単純な色の見えモデルの例となり、[14]その延長線上でCIECAM02がつくられた。
色の違いの測定
L*、a*、b* の非線形な関係は人間の目の非線形な反応を擬似しようとしたものである。さらにL*a*b*色空間における成分の一様な変化は、知覚される色の一様な変化に対応させられている。したがって2つの色の相対的知覚差異は、その2つの色をL*a*b*の3次元空間内の点とし、それらのユークリッド距離を測ることで近似できる[15]。
RGBやCMYKとの変換
RGBやCMYKの色モデルはデバイス依存であるため、それらの値をL*a*b*に変換する単純な式は存在しない。RGB値やCMYK値はまず特定の絶対色空間(sRGBや Adobe RGB など)に変換する必要がある。この補正はデバイス依存だが、それによってデータはデバイス依存でなくなり、CIE 1931 色空間に変換可能となり、そこからL*a*b*に変換できる。
L*a*b* 座標の範囲
前述したように L* 座標の範囲は0から100である。a* と b* 座標の範囲は変換元の色空間によって異なる。例えば、sRGBから変換した場合、a* 座標の範囲は [-0.86, 0.98]、b* 座標の範囲は [-1.07, 0.94] となる。
CIE XYZ との変換
CIE XYZ からの変換
基礎的な色 | |
---|---|
代表的な二次色 |
印刷 | |
---|---|
コンピューター |
混色系 | |
---|---|
顕色系 | |
その他 |