驚異の定理(Theorema egregium)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/08 05:12 UTC 版)
「ガウス曲率」の記事における「驚異の定理(Theorema egregium)」の解説
詳細は「驚異の定理」を参照 ガウスの驚異の定理(ラテン語:Theorema Egregium)は、曲面のガウス曲率が曲面自身の上の長さを測ることから決定することができることを述べた定理である。実際、第一基本形式(first fundamental form)の考え方の全体として理解され、第一基本形式とその一階と二階の偏微分として表される。同値なことであるが、R3 の中の曲面の第二基本形式(second fundamental form)の行列式はそのように表現することができる。この定理の注目すべき驚異の点は、R3 の中の曲面 S のガウス曲率の「定義」が、曲面の空間内の位置に依存しているにもかかわらず、最終的な結果であるガウス曲率自体は、周囲の空間を何ら参照することなしに、曲面の本質的な計量(英語版)(intrinsic metric)を決定することである。つまり、これは曲面自体が持っている本質的な性質である。特に、ガウス曲率は、曲面の等長な変形の下に不変である。 現代の微分幾何学において 曲面は 2次元微分可能多様体(differentiable manifold)であると、抽象的にみなす。曲面の古典論(英語版)(classical theory of surfaces)の観点からは、そのような抽象的な曲面は R3 へ埋め込まれ(embedded)、第一基本形式により与えられるリーマン計量を持っている。R3 の中に曲面 S が埋め込まれていることを想定する。局所等長性(local isometry)は、S ∩ U への制限が像の上において等長(isometry)となるような R3 の開領域微分同相写像 f: U → V である。従って、Theorema Egregium では次のように記述されている。 R3 に埋め込まれた滑らかな曲面のガウス曲率は、局所等長変換の下に不変である。 例えば、円筒形のガウス曲率は 0 であり、「捩れていない」(平坦である)チューブも同様である。一方、半径 R の球面は正の定数曲率 R−2 を持ち、平坦な平面が曲率 0 を持ち、これら 2つの曲面は局所的にさえ等長ではない。このように、球面の一部でさえ、平面表現(planar representation) は距離を混乱させてしまう。従って、いかなる地図の投影法も完全ではない。
※この「驚異の定理(Theorema egregium)」の解説は、「ガウス曲率」の解説の一部です。
「驚異の定理(Theorema egregium)」を含む「ガウス曲率」の記事については、「ガウス曲率」の概要を参照ください。
Weblioに収録されているすべての辞書から驚異の定理を検索する場合は、下記のリンクをクリックしてください。

- 驚異の定理のページへのリンク