ガウス曲率
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/07 10:07 UTC 版)
![]() |
原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。
|
微分幾何学において、曲面上のある点でのガウス曲率(ガウスきょくりつ、英: Gauss curvature又は英: Gaussian curvature)とは、与えられた点での主曲率κ1 と κ2 の積である。曲面上の距離だけに依存する量で、空間への等長的な埋め込み方法にはよらない。1827年にTheorema Egregiumを発表したカール・フリードリッヒ・ガウス (Carl Friedrich Gauss) の名前に因んで名付けられた。
定義

曲面の任意の点で、曲面に対して垂直である法線ベクトル(normal vector)を見つけることができる。法線ベクトルを含む平面を法平面(normal plane)と呼ぶ。法平面と曲面の交差は、法切断(normal section)と呼ばれる曲線を形成し、この曲線の曲率が法曲率(normal curvature)である。ほとんどの曲面上のほとんどの点に対し、ことなる切断ごとに異る曲率となる。これらの最大値と最小値を主曲率といい、κ1, κ2 と表す。ガウス曲率(Gaussian curvature)は 2つの主曲率の積 Κ = κ1 κ2 である。
ガウス曲率の符号は、曲面を特徴付けることに使うことができる。
- 主曲率の双方が同符号 κ1κ2 > 0 であれば、ガウス曲率は正であり、曲面は楕円点を持っているという。そのような点では、曲面はドームのようになっていて、局所的に接平面が曲面の同じ側へ来る。全ての断面曲率が同じ符号となる。
- 主曲率が異る符号を持つ κ1κ2 < 0 と、ガウス曲率は負であり、曲面は双曲点を持っているという。そのような点では、曲面は鞍点の形をしている。2つの方向に断面曲率が 0 となり、漸近方向(asymptotic direction)を与える。
- 主曲率のうちのひとつが 0、つまり κ1κ2 = 0 であれば、ガウス曲率は 0 であり、曲面は放物点を持っているという。
殆どの曲面は、正のガウス曲率(楕円点)の領域を持ち、負のガウス曲率の領域は放物線と呼ばれるガウス曲率が 0 となる点の曲線により分離される。
議論
微分幾何学において、曲面上の与えられて点での 2つの主曲率は、その点でのシェイプ作用素(shape operator)の固有値である。これらの固有値は、与えられた点で異る方向に曲面がどれくらい折れ曲がっているかを測る。陰函数定理により、2変数の函数 f のグラフとして曲面が表現される。そこでは、点 p は臨界点、すなわち f の勾配が 0 となる。(このことは、常に適切な厳密な運動によって可能となる。)従って、p での曲面のガウス曲率は、(ヘッセ行列の固有値の積である) f のヘッセ行列の行列式である。(ヘッセ行列は、二階微分の 2 × 2 行列であることを思い起こしてほしい。)この定義からは、ただちに、cup型/cap型 と 鞍点(saddle point)の違いを理解することができる。
別な定義
参考文献
- ^ Porteous, I. R., Geometric Differentiation. Cambridge University Press, 1994. ISBN 0-521-39063-X
- ^ Kühnel, Wolfgang (2006). Differential Geometry: Curves - Surfaces - Manifolds. American Mathematical Society. ISBN 0-8218-3988-8
- ^ Gray, Mary (1997), “28.4 Hilbert's Lemma and Liebmann's Theorem”, Modern Differential Geometry of Curves and Surfaces with Mathematica (2nd ed.), CRC Press, pp. 652–654, ISBN 9780849371646.
- ^ Hilbert theorem. Springer Online Reference Works.
- ^ Gaussian Curvature on Wolfram MathWorld
- ^ a b Bertrand–Diquet–Puiseux theorem
- ^ Struik, Dirk (1988). Lectures on Classical Differential Geometry. Courier Dover Publications. ISBN 0-486-65609-8
外部リンク
- Hazewinkel, Michiel, ed. (2001), “Gaussian curvature”, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4
- Curvature in two spacelike dimensions
ガウス曲率
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/02 02:08 UTC 版)
曲面のガウス曲率は次の式で与えられる。 K = det I I det I = L N − M 2 E G − F 2 , {\displaystyle K={\frac {\det \mathrm {I\!I} }{\det \mathrm {I} }}={\frac {LN-M^{2}}{EG-F^{2}}},} ここで、 L 、 M 、およびNは、第二基本形式の係数である。 ガウスの驚異の定理は、曲面のガウス曲率は第一基本形式とその微分を用いるだけで表すことができるということを主張しており、したがって、ガウス曲率 K は、事実として、曲面の内在的な不変量であるということを主張している。第一基本形式に関するガウス曲率の明示的な表現は、 Brioschiの式によって与えられる。
※この「ガウス曲率」の解説は、「第一基本形式」の解説の一部です。
「ガウス曲率」を含む「第一基本形式」の記事については、「第一基本形式」の概要を参照ください。
- ガウス曲率のページへのリンク