ガウス・ボネの定理
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/03/16 03:25 UTC 版)
![]() | 原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。 |
微分幾何学において、ガウス・ボンネの定理[1](Gauss–Bonnet theorem)、あるいはガウス・ボンネの公式(Gauss–Bonnet formula)は、(曲率の意味で)曲面の幾何学と(オイラー標数の意味での)曲面のトポロジーと結びつける重要な定理である。命名はこの定理に最初に気づいたが出版しなかったカール・フリードリッヒ・ガウス(Carl Friedrich Gauss)と、1848年に特殊な場合について出版したピエール・オシアン・ボンネ(Pierre Ossian Bonnet)にちなんでいる。
定理の内容
- ^ 小林昭七 『曲線と曲面の微分幾何』裳華房〈基礎数学選書 17〉、1977年8月20日、173頁。ASIN B000J8X6V8。ISBN 4-7853-1119-3。
- ^ Chen L and Rong Y, Linear Time Recognition Algorithms for Topological Invariants in 3D, arXiv:0804.1982, ICPR 2008
外部リンク
- Hazewinkel, Michiel, ed. (2001), "Gauss-Bonnet theorem", Encyclopaedia of Mathematics, Springer, ISBN 978-1-55608-010-4。
- Gauss–Bonnet Theorem at Wolfram Mathworld
ガウス・ボンネの定理
ガウス・ボンネの定理[1](Gauss–Bonnet theorem)は、リーマン計量が定義された曲面における曲率の積分がその曲面のオイラー標数で表せる、という趣旨の定理である。これは曲面の局所的な微分幾何学的構造(曲率)の積分とその曲面の大域的な位相幾何学的構造(オイラー標数)とを結び付ける重要な定理である。
この定理はカール・フリードリヒ・ガウスが1827年に論文[2]で測地線で囲まれた三角形の場合に対して証明し[3]、ピエール・オシアン・ボンネが1848年に論文[4]で一般の曲面に対して定理を示した[3]。なおジャック・フィリップ・マリー・ビネがボンネとは独立に一般の場合を示していたが、ビネは成果を発表しなかった[3]。
定理
多角形の場合
脚注
出典
- ^ #小林77 p.173.
- ^ C. F. Gauss『Disquisitiones generales circa superficies curvas』1827年。
- ^ a b c #Wu p.1.
- ^ O. Bonnet (1848). “Mémoire sur la thé orie géné rale des surfaces”. J. de l’Ecole Poly-technique (Tome 19, Cahier 32): 1-146.
- ^ #小林77 p.128.
- ^ #Berger pp.112,138.
- ^ #Lee pp.164,167.
- ^ #Tu p.92.
- ^ #Abate p.319
- ^ #Gilkey p.126
- ^ #Carmo p.131.
- ^ a b #Lee p.151.
- ^ #Carmo p.129
- ^ #Zhu pp.1-2.
- ^ Chen L and Rong Y, Linear Time Recognition Algorithms for Topological Invariants in 3D, arXiv:0804.1982, ICPR 2008
- ^ a b c #Li p.4.
- ^ #Li p.17.