ガウス・ルジャンドル法
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/05/17 14:20 UTC 版)
上述の点 ci は n 次のルジャンドル多項式の根として選べる。それらの点に対応する選点法は、n 段ガウス・ルジャンドル法(Gauss-Legendre method)として知られている。n 段ガウス・ルジャンドルは次数 2n を持ち、n 段ルンゲ=クッタ法の中にでも一番精度の高い方法である。さらに、ガウス・ルジャンドル法はすべてA-安定であり、硬い方程式にも適用できる。しかし n が4以上の時、ルジャンドル多項式の根を効率良く計算することが困難であり、加えて対応する方法の係数も極めて複雑であるので、4段以上のガウス・ルジャンドル法はあまり使われない。 2段ガウス・ルジャンドル法は以下のブッチャー配列で与えられる。 1 2 − 3 6 1 4 1 4 − 3 6 1 2 + 3 6 1 4 + 3 6 1 4 1 2 1 2 {\displaystyle {\begin{array}{c|cc}{\frac {1}{2}}-{\frac {\sqrt {3}}{6}}&{\frac {1}{4}}&{\frac {1}{4}}-{\frac {\sqrt {3}}{6}}\\{\frac {1}{2}}+{\frac {\sqrt {3}}{6}}&{\frac {1}{4}}+{\frac {\sqrt {3}}{6}}&{\frac {1}{4}}\\\hline &{\frac {1}{2}}&{\frac {1}{2}}\\\end{array}}} そして3段ガウス・ルジャンドル法は以下のブッチャー配列で与えられる。 1 2 − 15 10 5 36 2 9 − 15 15 5 36 − 15 30 1 2 5 36 + 15 24 2 9 5 36 − 15 24 1 2 + 15 10 5 36 + 15 30 2 9 + 15 15 5 36 5 18 4 9 5 18 {\displaystyle {\begin{array}{c|ccc}{\frac {1}{2}}-{\frac {\sqrt {15}}{10}}&{\frac {5}{36}}&{\frac {2}{9}}-{\frac {\sqrt {15}}{15}}&{\frac {5}{36}}-{\frac {\sqrt {15}}{30}}\\{\frac {1}{2}}&{\frac {5}{36}}+{\frac {\sqrt {15}}{24}}&{\frac {2}{9}}&{\frac {5}{36}}-{\frac {\sqrt {15}}{24}}\\{\frac {1}{2}}+{\frac {\sqrt {15}}{10}}&{\frac {5}{36}}+{\frac {\sqrt {15}}{30}}&{\frac {2}{9}}+{\frac {\sqrt {15}}{15}}&{\frac {5}{36}}\\\hline &{\frac {5}{18}}&{\frac {4}{9}}&{\frac {5}{18}}\end{array}}}
※この「ガウス・ルジャンドル法」の解説は、「選点法」の解説の一部です。
「ガウス・ルジャンドル法」を含む「選点法」の記事については、「選点法」の概要を参照ください。
ガウス・ルジャンドル法
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/03/11 04:08 UTC 版)
「ルンゲ=クッタ法のリスト」の記事における「ガウス・ルジャンドル法」の解説
これらの方法はガウス求積法に基づいた方法であり、高い次数を持つ(s 段ガウス・ルジャンドル法の次数は 2s である)。 4次の方法は以下のブッチャー配列で与えられる。 1 2 − 3 6 1 4 1 4 − 3 6 1 2 + 3 6 1 4 + 3 6 1 4 1 2 1 2 1 2 + 1 2 3 1 2 − 1 2 3 {\displaystyle {\begin{array}{c|cc}{\frac {1}{2}}-{\frac {\sqrt {3}}{6}}&{\frac {1}{4}}&{\frac {1}{4}}-{\frac {\sqrt {3}}{6}}\\{\frac {1}{2}}+{\frac {\sqrt {3}}{6}}&{\frac {1}{4}}+{\frac {\sqrt {3}}{6}}&{\frac {1}{4}}\\\hline &{\frac {1}{2}}&{\frac {1}{2}}\\&{\frac {1}{2}}+{\frac {1}{2}}{\sqrt {3}}&{\frac {1}{2}}-{\frac {1}{2}}{\sqrt {3}}\\\end{array}}} さらに6次の方法に対応する配列は以下で与えられる。 1 2 − 15 10 5 36 2 9 − 15 15 5 36 − 15 30 1 2 5 36 + 15 24 2 9 5 36 − 15 24 1 2 + 15 10 5 36 + 15 30 2 9 + 15 15 5 36 5 18 4 9 5 18 − 5 6 8 3 − 5 6 {\displaystyle {\begin{array}{c|ccc}{\frac {1}{2}}-{\frac {\sqrt {15}}{10}}&{\frac {5}{36}}&{\frac {2}{9}}-{\frac {\sqrt {15}}{15}}&{\frac {5}{36}}-{\frac {\sqrt {15}}{30}}\\{\frac {1}{2}}&{\frac {5}{36}}+{\frac {\sqrt {15}}{24}}&{\frac {2}{9}}&{\frac {5}{36}}-{\frac {\sqrt {15}}{24}}\\{\frac {1}{2}}+{\frac {\sqrt {15}}{10}}&{\frac {5}{36}}+{\frac {\sqrt {15}}{30}}&{\frac {2}{9}}+{\frac {\sqrt {15}}{15}}&{\frac {5}{36}}\\\hline &{\frac {5}{18}}&{\frac {4}{9}}&{\frac {5}{18}}\\&-{\frac {5}{6}}&{\frac {8}{3}}&-{\frac {5}{6}}\end{array}}}
※この「ガウス・ルジャンドル法」の解説は、「ルンゲ=クッタ法のリスト」の解説の一部です。
「ガウス・ルジャンドル法」を含む「ルンゲ=クッタ法のリスト」の記事については、「ルンゲ=クッタ法のリスト」の概要を参照ください。
- ガウス・ルジャンドル法のページへのリンク